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Abstract is orders of magnitude more expensive in terms of both

High Level Synthesis (HLS) is a promising technol- design and manufacturing th_an producing software._
ogy where algorithms described in high level languages C“le(t modulartroutesrt[12f] '3 %ﬂi@%‘i tgzl for Wr_'t'.
are automatically transformed into a hardware designIng sortware routers. stantord Ne [14] is a simi-

Although many HLS tools exist, they are mainly target- larly flexible platform for developing hardware routers.

ing developers who want to use a high level program_WhiIe programming packet processing applications in

ming language to design hardware modules. They are no(%“Ck C++ is easy and flexible, describing even a sim-

designed to automatically compile a complete softwaréDle application in VHDL /Verilog (for the NetFPGA) is a

: .__.._relatively major undertaking. Combining the good sides
system, such as a network packet processing apphcatlonr] L
into a hardware design. ffom both of the two could be an enabler for rapid imple-

mentation of efficient packet processing applications.

In this paper, we describe a compiler toolchain that au- . .
tomatically transforms existing software in a limited do- An ideal software-_to-ha_rdware_ toolchaln .WOUId allow
gne to express designs in a widely familiar program-

main to a functional hardware design. We have selected’. .
ing language, such as C or C++, and convert these into

the Click Modular Router as the input system, and the" ; ) .
Stanford NetFPGA as the target hardware platform. Ou hardware implementation that could be tested in real
ife, e.g. using the NetFPGA. Unfortunately, our limited

toolchain uses LLVM to transform Click C++ code into . g : .

a form suitable for hardware implementation and then_tesFIng of the existing HLS (_Hl_gh—LeveI Synthesis) tools
uses AHIR, a high level synthesis toolchain, to producénd'c"’lteOl that they are definitely not ready to take an
a VHDL n e’tlist ’ existing software system and transform that into hard-

The resulting netlist has been verified with actual hard-"2'® [hl.5]. q i . | toolcha
ware on the NetFPGA platform. The resulting hardware In this paper, we describe an experimental toolchain

can achieve 20-50 % of the performance compared tghat is able to transform existing, software-oriented C++
version handwritten in Verilog. We expect that improve- algokrlthms—Wthln the l'mr']te% domz?jm Of_C!'Ck'baSﬁd
ments on the toolchain could provide better performance’?ﬁlC etprocesilngzlﬂtoa ardware .Iescnpizpn. gle ave
but for the first prototype the results are good. We feeICh osen to W(,)(; wit ,t € LfLVMI comg| ertoo. it [ﬁ I, a|‘S
that one of the biggest contribution of this work is that (€€ 1S @ wide variety of tools and an active develop-

it shows some new principles of high-level synthesis thatm(lint c(:jommunityfvvrclnrking on LI}I\_/VMI\/'I 'Il;his 3llows”us|_ tp
could also be applied to different domains, source lan{@ €a va_mtageo the ex:jstllng_ | ) alllse paralielising
guages and targets. optimisations. LLVM modularity also allows us to eas-

ily write our own transforming compiler passes, and to
add our own back end, a non-commercial HLS toolchain
1 Introduction called AHIR [17].

The Click2NetFPGA Toolchain has a different ap-
Writing packet processing applications in software offersproach than the existing HLS tools. While it also has
a flexible and easy way for experimentation and producsome restrictions on what type of source code can be
development. Hardware-based implementations, on thased as input, it transforms a complete software system
other hand, characterised by parallel operations and innto a hardware design — automatically. By selecting a
flexibility, result in better energy efficiency and higher restricted source domain, it was possible to have certain
operational speed. At the same time producing hardwarassumptions, and create a toolchain that could in practice



do what hasn’t been done before — translating a softwareroduct, the AutoPilot from AutoESL, later bought by
router to a hardware router. Our current approach comxXilinx [1]. The AutoESL High-Level Synthesis Tool ac-
bines typical software-oriented optimisations and someepts synthesisable ANSI C, C++ and SystemC as input.

parallelising optimisations together with compile-time  The Click2NetFPGA Toolchain has one major differ-
generated constant data structures and constant propaggsce to those listed above. It transforms a complete soft-
tion. Our compiler front end lowers the original Click ware system into a hardware design — automatically. Pre-
programs into versions that are more suitable for generyious works either hardware accelerate certain parts of a
ating VHDL with the AHIR backend. software program, or completely synthesise only smaller
The version of our toolchain presented earlier [15] wasypits, such as single functions, that can then be used
about exploring the possibilities of some commercially 35 parts of a hardware design. Click2NetFPGA takes a
available HLS tools as the backend of our toolchain.complete Click software router and transforms the packet
In this paper, we describe the second version of th%rocessingfunctionalityinto the NetFPGA environment.
toolchain. We have switched from a commercial backendsy having this restricted source domain, it was possible
to AHIR and rewritten the front end from scratch, build- tg have certain assumptions (such as Click code having

ing on the knowledge gained when working with the pre-nq recursion), and create the prototype toolchain.
vious version. Since the second report of our work [16],

e : . Our toolchain is more of a “system-to-system” com-
\gg,za(\;/g drgo;m'iz\t/zz '?;zrfaei?o?ggﬁfen;}lgt:;g”'i\:et;piler, than yet another HLS tool. Besides the source soft-
 IMP P y ¢ are, the toolchain takes the system description, i.e. the
the toolchain and have been able to evaluate some Clic

configurations on a NetFPGA card and in the Modelsim “.Ck. router configration as an input. Whll.e many of t_he
simulator existing HLS tools could be used to compile single Click

. . . . C++ elements into Verilog or VHDL, they wouldn’t be
In Section 2 we give a brief look onto the essential .
: o . . able to connect these elements together nor to interface
background information, in Section 3 we outline the op-

. o X . them correctly on the target system — the NetFPGA.
er§t|on_ of the toolchain, in Sectlon 4 we go into the d.e'Some of the existing HLS tools could be added to the
tails with a usage example, Section 5 is on evaluatio

) . . "Click2NetFPGA toolchain, either to perform a certain
and, finally, in Section 6 we conclude the paper. S ;
new optimisation, or then the toolchain could have been
completely built upon some other tool than the AHIR
2 Background that we chose. Before selecting AHIR, we did evaluate
a number of commercial HLS tools [15]. AHIR suited
In this section, we describe some existing related workour purposes better, as it is an open source project and
and then we go into the major components that we haveve were free to modify it along our project.
used to build our toolchain and its input and target sys-
tems.

2.1 Related Work 2.2 LLVM

Over the years, several academic and commercial high-LVM [13] is a collection of modular components for
level synthesis research results and tools have been intruilding compiler toolchains. The LLVM components
duced. As already mentioned, most put some restrictiongPerate on an intermediate language, called the LLVM
on the input programming language, or are solving a spelntermediate Representation (LLVM IR). The LLVM
cific optimisation problem. core consists of a compiler driver, a number of analysis
Trident is using LLVM to generate parallel hardware and code optimisation passes, and a debugger. Several
circuits from floating point algorithms. It doesn’t allow front ends and backends are using LLVM: clang [2] is
e.g. recursionmal | oc or free calls, function argu- intended as a replacement for GCC. The Dragonegg plu-
ments or returned values [18]. gin [3] allows to replace the GCC optimisers with those
LegUp introduces creating a soft MIPS processor androm LLVM, thereby enabling all the GCC supported
hardware accelerators that communicate through a bUgnguages and targets to be optimised with LLVM.
interface. It uses LLVM to profile running software to  LLVM has been used to implement a variety of lan-
identify candidate parts for hardware acceleration. Theguage toolchains, including previous approaches to gen-
rest of the code is run as software on the MIPS pro-erate hardware [18] and bit-level optimisation of HLS
cessor, including code using dynamic memory, floatingdata flows [19]. TCE [9] is a set of tools for designing
point and recursion [6]. processors based on Transport Triggered Architecture.
The UCLA xPilot project developed a high level syn- TCE uses the LLVM clang [2] compiler as the front end
thesis toolchain using LLVM [8] which evolved into a for compiling hardware designs written in C and C++.



2.3 AHIR gramming, they complicate the task of synthesising hard-

) ware from the software.
AHIR [17] is a backend for LLVM that transforms

LLVM bytecode to VHDL. It is a toolchain on its own,
consisting of several different tools with intermediate re 2.5 NetFPGA

§U|t files. AH.IR is still a vyork in progressland sev_eral OT The NetFPGA platform [14] provides a platform for re-
Its §hortcom|ngs were discovered and fixed during thISsearchers who are interested in investigating line speed
project, oo packet processing applications. It is similar to Click in
The LLVM IR is first translated to an AHIR assem- he sense that it provides a set of building blocks and
bly language program (aAa program). TheAa pro-  yhe yser can extend the system by introducing new build-
gramming language corresponds to a hierarchically cong,q piocks as well. Within this framework, students and
structed Petri net (the type Il Petri net), in which paral- egearchers can write code to implement a variety of
lelism as well as complex control flow can be expressed,ting and packet processing applications that are then
in a direct manner. In aAa program, storage variables gy nthesised into hardware. The NetFPGA board can be

and first-in-first-out pipe_s are natural pbjects which Cany|ygged into a PC providing control plane support, and
be used for communication between different parts of thgne resyiting application can be tested at line speed in
program. Severaia programs can be linked together us- 4 ,al networks.

ing anAa linker. _ _ The first version of the NetFPGA platform provides a
A linked Aa program is then transformed 0\~ hargware board with a Xilinx Virtex-1l Pro FPGA and a
tual circuit or vC program, in which the control-flow, \erilog framework supporting hardware with a PCI bus
data-flow and storage aspects of the sokaeprogram  anq four 1 Gbps Ethernet ports. There is also a newer ver-
are separated out (and optimised). The primary optimisjon of the NetFPGA available with four 10 Gbps Ether-
sations possible at this stage are: resource sharing, dggt ports, a faster and bigger FPGA and more memory.

pendency analysis, and clustering of storage into disjoin{ye are currently using the first version of the card for
memory spaces. TheC program is further translated to g project.

a VHDL description, which can be directly synthesised
to target an FPGA or ASIC implementation. ) ]
The current version of AHIR supports a wide set3 Overview of the Toolchain

of LLVM IR—the few notable exceptions are function ) )
pointers and recursion. We call this prototype software a “toolchain”, although

it could also be called or thought of as a “compiler”,
as it compiles a Click router into a NetFPGA compat-
2.4 Click Modular Router ible hardware design. However, it is more a chain of

. ) . tools: Click2LLVM, LLVM, AHIR, NetFPGA SDK, Xil-
Click was introduced by Eddie Kohler [11] as a platform i« |SE and several shell scripts, bound together by a

for developing software routers and packet processingople of Makefiles. We are running the toolchain on
applications. A pac_ket progessing application is assemjnyx, but it could be ran on e.g. FreeBSD or Mac OS
bled from a collection of simpler elements that imple- x with minor modifications, at least until the synthesis
ment basic functions, such as packet classification, queyxilinx) stage, as Xilinx ISE is only available for Linux
ing, or interfacing with other network devices. The ele- 3nq Windows.
ments are assembled into a directed graph using a con- The Click2NetFPGA toolchain consists of five main
figuration language and packets flow along the links Ofstages:
the graph. Click provides some features to simplify writ-
ing complex applications, including pull connections to 1. Compile Click elements
model packet flow driven by hardware and flow-based
contexts to help elements locate other relevant elements.2. Link required files into an LLVM Module
Since its introduction, Click has been used as a tool for
research into a wide variety of packet processing applica-
tions. Some representative examples are multiprocessor4' Convert to VHDL
routers [7] and prototyping a new architecture for large
enterprise networks [10]. 5. Create the netlist

Click modules use the full power of C++ as an object-
oriented programming language, including virtual func- This process is depicted in Figure 1. The goal of the
tions and dynamically allocated memory. While thesefirst step is to compile all Click elements and library
language constructs facilitate code reuse and ease of prolasses into linkable object files as well as LLVM IR

3. Run transformations
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Figure 1: The Click-to-NetFPGA toolchain

source files. This stage needs to run only initially anderal transformations, partly due to the nature of Click
when Click source code is modified. code. It might be possible to write e.g. recursive code

In the second stage| i ck2l | vm— the front end in a Click element, but in practice most Click elements
of the toolchain — reads the user-provided Click con-can be transformed into a synthesisable form. The AHIR
figuration file where elements and their connections ard¢oolchain reads this transformed LLVM IR file and cre-
defined. The corresponding linkable object files are therfites a VHDL file.
loaded by thecl i ck2l | vmtool with a Click library In the last phase the toolchain takes the VHDL gener-
function. ated by the AHIR and combines it with a VHDL wrap-

After loading and initialising the Click router in the Per and Verilog files from the NetFPGA SDK and uses
cl i ck2l | vm process memory space] i ck2l | vm  the Xilinx toolchain to create a netlist. The netlist can
reads the initialised values from memory and writes then{hen be loaded to the NetFPGA. If the resulting netlist is
out as constants in the LLVM IR format using LLVM li- 00 big to load, it will be only found out at the very end.
brary routinescl i ck2l | vmalso generates some wrap- |t would be good to add a checking stage earlier in the
per code and imports the library functions that the ele-toolchain for the required vs. available FPGA resources.
ments are calling. All the required code is inserted to anl his would require adding some analysis steps into the
LLVM Module that is written out as a single LLVM IR  toolchain and is left for further study.
file (Linked IR).

The resulting LLVM Module needs several transfor- 4
mations and optimisations so that AHIR can transform
it to VHDL. First trick is to replace thehis argument In this section we will take a closer look on the imple-
in functions with a constant variable (the Click elementmentation of the toolchain. First we will describe the re-
of the same type). For this, we have written our ownsulting hardware architecture, and then go into more de-
LLVM transformation pass. This makes most functionstails. We'll describe the changes to Click, the step from
constant and enables better constant propagation optimglick to LLVM by the front end and transformations on
sation later. Then we run LLVMpt with a number of  the LLVM IR Module. Then we will explore the creation
optimisation passes, including constant propagation andf the netlist by AHIR. At the end of the section we have
inlining. For inlining, we use high inline treshold to get a usage example on how a specific Click configuration
as much inlining as possible. Finally, we run a script ongets compiled by the toolchain.
the LLVM module that replaces calls to LLVM intrinsics
(e.g. memcpy) with calls to our own implementations of
those functions.

Finally, there will be no function calls, loops or other The final system generated by AHIR has a single pair
non-synthesisable constructs left, partly due to our sevef input data/control pipes and a single pair of out-

Implementation Details

4.1 Resulting Hardware Architecture
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Figure 2: The resulting architecture

put data/control pipes which interface to the NetFPGA"R” for r ead_ui nt pt r () — note that the figure rep-
pipeline: Internally, the modules inside the AHIR systemresents a “snapshot of the system in time”, where 3 dif-
are of two types: ferent packets are being processed by different modules
— it is not a description of the hardware with all wires
e Those that are “always on”: these modules listen onrdrawn to be visible.). The result is a collection of inter-
input pipes, process data, and send processed dagzting AHIR modules (a pipeline) which implements the
out on output pipes (essentially, these are pipe-lineriginal Click configuration.
stages). Pipe accesses are blocking in nature, that is
aread from a pipe blocks until there is something in
the pipe available to be read, and a write blocks until
the pipe has room for new data.

" The Click framework defines a packet as a distinct in-
memory object that can be created, copied, and deleted.
The size of the packet may change during its lifetime,
which can also affect the space it occupies in the mem-
ory. In our implementation, the available memory for
packets is divided into a set of fixed-size buffers. A

control signals, and normally rlgvg 'nplf,t f’md (.)UtpUtpacket inside the system is then identified by the pointer
arguments. When the module “finishes”, it indicates T .
to the buffer which it occupies.

this to the invoker, who can then use the output ar-
guments produced by the module. These modules The packet buffers are managed using queues. A
correspond to sub-routines invoked during system‘free queue” (see Figure 2) contains pointers to cur-
operation. rently free slots for packets. In addition, queues

are provided between elements to hold packets that
A Click configuration consists of a set of Click ele- are in transit. The modulesr apper _i nput () and

ments that exchange packet pointers over port connecw apper _out put () are static pieces of C++ and Aa
tions. The pointers are used by the elements to accesode which provide the functionality needed to obtain
packets from the main memory. We have translated am free packet buffer, fill it with incoming packet data,
input Click configuration to a set of "always on” AHIR pass the incoming packet pointer to the Click mod-
modules where each module implements the behaviouwiles, receive the outgoing packet pointer from the Click
of one Click element and the connections between Clickpipeline, send out the outgoing packet and release the
elements are mapped to writing and reading from gpacket buffer. These are linked into the Click-based mod-
named pipe that connects the elements (see Figure 2Jes by the AHIR toolchain (see Figure 2). The linked de-
where a “W” stands fomrite_uintptr() and an signis then used to replace the output port lookup mod-

e Those that are “called”: these are invoked by input



ule of the NetFPGA reference NIC design. case, the packet processing phase then continues until the
user terminates it. In our toolchain, the first two steps of

. this process are performed by thei ck2l | vmcom-

4.2 New Target for Click piler. The last, actual packet processing step is then per-

Click consists of a runtime library and a large set of formed by the synthesised hardware.
standard elements. The library implements the essential When Click parses and initialises a configuration, it
components, such as the Element, Packet, and Routatso instantiates all the elements defined in the configu-
classes, altogether some 80 classes. Click can be comation and invokes the initialisation methods of the result
piled as a userspace program on e.g. Linux, FreeBSD dng element instances. In practise, the elements are either
Mac OS X, or as a kernel module for Linux. Certain partsstatically compiled to the tool itself, or the i ck tool
of the library differ between these targets, e.g. in Linuxdynamically loads the elements into its address space
kernel nativeskb structures are used to represent pack-from a dynamically linked shared library. The tool then
ets. When compiled as a userspace program, packets arestantiates the C++ classes representing the elements
stored in the memory area of the runnirig ck process. and invokes their virtual methods to configure and ini-
We have added yet another compilation target fortialise them.
Click: NetFPGA. The modifications are implemented cl i ck2l | vmis essentially identical with thel i ck
with similar precompiler instructions and often in the userlevel tool up to this point. While the standard
same functions or methods which already differed betool would now initiate packet processing, our com-
tween Linux kernel and userspace implementations. Ongpiler writes out the resulting initialised router. For this
example of such a modification is the creation of acl i ck2l | vmuses LLVM libraries to link all neces-
new packet through th@acket : : make() method. sary Click elements as pre-compiled LLVM modules
In the Linux kernel arskb is referenced fronCl ass into a single LLVM module. It then uses the LLVM
Packet , while in userspace Click, memory is allocated St r uct Layout API to find the memory locations for
dynamically from process memory space. In NetFPGA different fields of the Click elements. These memory lo-
we request a memory address for a block of pre-allocatedations represent the instance variables of the C++ Click
BRAM. This BRAM is defined in C++ as an array of classes. It then iterates through each Click element of the
bytes, that is transformed to VHDL by AHIR. By de- Router, and writes an LLVM Global Variable for each
fault, we have allocated 32 KB of BRAM that can hold Click element into the LLVM Module. Each element be-
16 packets, each having maximum size of 2 KB. A “free comes a global constant struct in the resulting module.
queue” is used to record which BRAM slots are in use Normally, when a packet is receiveddhi ck, it calls
and which ones are free. Access to the free queue ithe push() or si npl e_acti on() of the first ele-
managed by AHIR primitives so that only one requestment in the configuration. After finishing with the packet
is served at a time. processing tasks, the current element then either drops
While we have modified some existing Click libraries the packet or calls thpush() orsi npl e_acti on()
and C++ classes, such as the Element and Packet Classegthod of the next element in the configuration and so
to map method implementations to AHIR primitives in- on. When the final element has finished the call stack re-
stead of Linux kernel or user space, our goal has been tturns and the first element reads the next packet. While
require no modifications to the existing Click elementsthis is a flexible way to operate in software, in hardware
and to require no new guidelines for writing new Click all Click elements will be continuously running in paral-
elements. The goal is to let the programmer concentratiel, and we need a different approach.
on describing packet processing in Click C++ without |n Click, connections between elements are C++
having to consider that it might be compiled to hard- pointers. For each packet (that is not simply dropped)
ware instead of software—as it is of no concern whetheg Click element needs to decide the outgoing port. Dur-
the target platform for a software compilation would be ing the initialisation of the router, the port table of each

Linux or FreeBSD. element is populated with pointers to appropriate next
elements based on the Click configuration file. In our
4.3 Compiling Click Configurations solution, we replace the pointers with names of AHIR

pipes. Instead of calling the function pointer from the
A Click configuration defines a particular assembly of port, we send the memory address of the packet through
Click elements, thereby constructing a packet processing pipe linked to the aforementioned port. We have imple-
application or, in Click terms, a Router. In practise, whenmented this by creating a NetFPGA specific implemen-
the userlevetl! i ck tool is used to execute the router, tation of theEl enent : : Port: : push() . Instead of
the tool first parses the configuration, then initialises thecalling the methods of the next element through pointers,
router, and finally starts packet processing. In the typicaive call functionar i t e_ui nt pt r () which AHIR will



later interpret as a write to a named pipe. The name of thand naming them differently, or writing a pass that splits
pipe is stored in th&l ermrent : : Port Class. Thisway thet hi s argument to two: one pointing to the constant
we get rid of the C++ call stack and are able to createpart of the class and another to the part holding instance-
separate hardware modules for each Click element thatpecific variables. The latter approach requires splitting
will run in parallel, connected by named pipes. We didn’tthe types in two as well. We feel this is all doable and
have to implement a NetFPGA counterpart for the C++could benefit optimising C++ software in general.

call stack, as AHIR takes care of passing the arguments Next we pass the LLVM optimiser a list of the wrap-
and return values for function calls. per functions that need to be considered as the “API”, and

Finally, we write out a single LLVM Module in the thus preserved in the output. “API” here means the same
LLVM IR language that contains the source code for theas themai n() function in regular C/C++ programs —
Click elements, required parts of the Click library (such a starting point for program execution that is not called
as theEl enent andPacket classes), constants that from within the program — that shouldn’t be optimised
representinitialised elements, and a wrapper function foaway as “dead code”. Temporary helper function defi-
each element. The wrapper function maps the element toitions €l enent _push(), see Program 3) and other
a separate program that reads packets from input portslead code gets optimised away and is not preserved in
processes those packets and writes them to appropriatee output. Since the Click elements are constants, we
output ports (see Program 3). get good results with the constant propagation and in-

Some Click elements use C++ library functions like lining passes. We usd nl i ne-t hr eshol d=10000
mencpy(), ntohs() or cl ock_gettinme(). The to get all packet processing code, e.g. {esh()

C++ compiler leaves these in the IR as “llvm intrinsics”, or si npl e_acti on() function of the corresponding
which means that the compiler backend needs to maglick element inlined in the wrapper function. We also
these calls to the target-specific implementations (on aise several other standard passes provided by the LLVM
Unix based system it would be the C++ runtime library). project.

To achieve this, we insert LLVM instructions that im-
plement the same functionality. For some, we currently . .
do not have a counterpart, like fofr ock _getti ne(). 4.5 Creating a Netlist

So far, we have implemented the required functions onThe collection of (optimised) LLVM modules produced
demand. It should be noted, however, that to supportangy c| j ck2l | vmis run through the AHIR toolchain
(future) Click element, all system calls should be imple-\yhich produces an AHIR system (described in VHDL).
mented on the NetFPGA. This is left as future work. Each LLVM module is implemented as an AHIR mod-

In the current prototype, we transfer all code into theyje (described as a VHDL entity/architecture pair). The
NetFPGA. In practice, it would make more sense to analaHIR module itself implements the control and data flow
yse the software, and leave parts of the code to be run ag the LLVM module with some optimisations; depen-
software on the host CPU. This would also require autogency analysis is used to extract parallelism from se-
matic generation of interface code between software angyential statement blocks, and expensive operators (such
hardware. However, with this prototype we have concengs multipliers) are shared by multiple operations. Stor-
trated on the problem of software to hardware translage variables described in the LLVM Module collection
tion, and we leave this analysis and divisioning problemare implemented as declared. In the AHIR system, stor-

for further study. age variables are organised into disjoint memory spaces
based on a static alias-analysis of the source program
4.4 Optimisation Phase In addition, the AHIR system implements the concept

of pipes (finite depth first-in-first-out queues) for inter-
The LLVM Module created by thel i ck2l | vmtool = module communication and synchronisation. Thus, two
is still unoptimised and contains constructs such as funcmodules in an AHIR system can communicate either
tion pointers that don’t easily map to hardware. We use ahrough storage variables or through pipes.
number of LLVM passes to transform these constructsin The translation process in the AHIR tool-chain itself
a more suitable form. consists of three steps. In the first step, the LLVM IR

The first pass replaces théi s argument in the C++ is translated to an AHIR assembly levéla) program.

originated methods with the global variable represent-Aa is an imperative and block-structured language which
ing the Click element. As a result the method becomesupports a large variety of types. The flow of control in
a constant function and can be inlined later. AlthoughanAa program block can be specified to be sequential or
this means that we can have only one instance of eacparallel. During this translation:
Click element class, the limitation can be removed, ei-
ther with the trivial approach of replicating the methods e Each LLVM module is translated to an equivalent



Aa module. All blocks in the resultinga program  ownni ni mal - package, thus ther equi r e declara-
are sequential in nature. tion on the first line. We currently require the elements
to be introduced and given names, which is done on the

e Declared storage variables in the LLVM IR are peyt seven lines. The last five lines describe the flow of
mapped to declared storage variables inAhero- packets between the elements.

gram.

o Pipes are inferred from the LLVM IR by Programlrouterclick
keying off the special functionsui nt ptr requi re(package "m ni mal - package”);
read_ui ntptr(const char* pname) (this Sf¢ :: FronFPGA
is translated as a read from a pipe with the specified 00 :: TOFPGAO;
name) and void witeuintptr(const 0l :: TOFPGAL;
char* pname, uintptr ptr) (translatedas t02 :: TOFPGAZ;
writing the value ptr into the pipe with the specified t 03 :: TOFPGA3;

name). chk :: Checkl PHeader ( 14);
rtt :: LinearlPLookup(172.16.0.0/24 0,
The second step is the conversion of tkee program 172.16.1.0/24 1,
to a virtual circuit in which the control flow, data flow 172.16.2.0/ 24 2,
and storage aspects of the program are separated. 172.16.3.0/24 3);

At this stage, dependency analysis is used to extract ther ¢ -> chk -> rtt;
maximum amount of parallelism that is possible fromrtt[0] -> to0;
sequential statement basic-blocks. Storage variables afd t [ 1] -> tol;
segregated into disjoint memory spaces whenever possitt[2] -> to2;
ble (disjoint spaces reduce load/store dependencies, afid t [ 3] -> t03;
further, are accessible in parallel). The virtual circuit
itself consists of distinct modules which communicate
with each other through pipes or through shared mem-
ory spaces. Program 2 ChecklPHeader::simplaction()

The final step is to generate the VHDL netlist from the Packet =
virtual circuit. This translation uses a VHDL library of Checkl PHeader: : si npl e_acti on(Packet =*p)
predesigned components such as operators, pipes, mefn-
ory spaces, arbiters etc. Virtual circuit modules are trans const click_ip *ip =
lated to VHDL entities (currently, each such entity is in- reinterpret_cast<const click_ip *>
stantiated once in the final system). Pipes are modeled in (p->data() + _offset);
a direct manner, as are the memory spaces. Concurrency unsi gned plen = p->length() -
analysis is carried out in the modules to determine opera- _of fset;
tions which can be mapped to the same operator without unsi gned hl en, | en;
the need of arbitration. Further, depending on command
line switches, the generated VHDL can be optimised for i f ((int)plen <
clock-period, and/or for area, or for cycle-count etc. We (int)sizeof (click_ip))
optimise the netlist to obtain the minimum area (given return drop(M NI SCULE_PACKET, p);
the constraints of the NetFPGA card) with a primary ob-
jective and the minimum clock period a secondary ob- return(p);
jective (in order to meet the 8 nanosecond clock period
requirement of the FPGA on the NetFPGA card).

ElementsFr onF-PGA and ToFPGA* are special ele-
ments that interface the Click/NetFPGA wrapper. They
To illustrate the operation of the toolchain, we will go are for convenience (to have static wrapper code) and
through the steps leading from the Click configurationalso as placeholders for code to transform packets be-
to the optimised LLVM IR. We have created a config- tween the NetFPGA and Click worlds. FromFPGA cal-
uration (see Program 1) which does packet switchingculates the Click-specific packet lengths and offsets and
based on the destination IPv4 address. The configuratiostores them in the packet—this way the wrapper needs
contains seven different Click elements. FromFPGA ancho modifications if Click itself is updated. ToFPGA does
ToFPGA* elements in the configuration come from our the reverse, mapping Click-specific fields into NetFPGA

4.6 Usage Example



control flags. We have created a separate TOFPGA eldeading to theli near | PLookup element, as per the
ment for each physical NetFPGA port: TOFPGAO sends out er. cl i ck configuration (see Program 1).
the packets to port 0, TOFPGAL1 to port 1, and so on.
To illustrate the mapping from Click C++ code and the
Click configuration file to LLVM IR, we take a closer 5 Evaluation
look at one of the used elements and parts of its packet
processing code. Program 2 shows a part of the C+¥Ve have compared the performance of the Click-based
source code for the packet processing code of Click eledesign vs. the Stanford reference switch implementa-
mentCheck| PHeader . Methodsi npl e_act i on() tion that is distributed with the NetFPGA software pack-
is part of the Click API, and is called for the packet age. The former is generated with our toolchain while
if the element has defined it. In tlgheck| PHeader the latter is handwritten in Verilog. While we can see
element, various standard checks are performed on aifiat we cannot yet reach the same performance with our
IP packet. A valid packet is forwarded to the next ele-toolchain, the results prove that our toolchain runs. We
ment, while packets failing a test will be dropped. Thewould like to remind that this is a proof-of-concepts pro-
si npl e_acti on() function of ChecklPHeader con- totype, yet we feel that it could be possible to reach better
sists of several checks, but we focus here on the first tesperformance levels by further optimising our toolchain,
where the size of the IP packet is checked. e.g. by rewriting some Click library implementations to
After running the click2l | vm tool with the better match the packet processing model of the NetF-
rout er.click configuration, we generate a wrap- PGA.
per function nameahi r gl ue_chk() in the result- Tests performed were PPS (Packets Per Second for 98
ing LLVM IR Module (see Program 3). First there is a and 1442 byte packets), Ping (average round-trip time
call toread_ui nt pt r () with the first argument be- for an ICMP Echo request/reply message pair) and max-
ing a pointer to the consta@l. This maps to a block- imum bandwidth (TCP for 60 seconds).
ing read of an AHIR pipe and returns when there is For bandwidth tests we have used iperf v2.0.4 [4] and
something written in queuehk_i n0. Writing to this  for the ping test the standard Ubuntu Linpkng com-
queue is done by ther onFPGA element, as described mand. For packets per second test we have used tcpreplay
in therout er. cl i ck. Next, the read pointer is cast v3.4.3 [5] on the sending host and iptables on the receiv-
to typestruct. Packet, which represents the C++ ing host to find the approximate maximum number of
Cl ass Packet of Click. Then a temporary helper packets per second before NetFPGA starts to drop pack-
function el enent _push() is called with two argu- ets. As the results show, we did not need more accurate
ments: a pointer to the Click elemer@(hk) and the measurement tools to find differences at this stage.
current packetd). Thisahi r _gl ue_chk() function The test setup consisted of two standard PCs with gi-
becomes an “always on” AHIR hardware module — its gabit ethernet interfaces running Ubuntu. The PCs were
software counterpart would be a loop that never termi-connected to two ports of the NetFPGA card in the third
nates. Linux machine running CentOS. With our PCs, we were
After optimisations on the LLVM Module, the opti- able to send maximum of about 415,000 packets per
mised version ofhi r gl ue_chk() (see Program 4) second when the packet size was 98 bytes (equals 325
is longer, but it has everything inlinéd The only  Mbps), and 84,000 packets when size was 1442 bytes
calls to external functions aneead_ui ntptr() and (equals 969 Mbps).
write.uintptr(), which are only keywords for  \ye compared the Stanford reference switch to two dif-
AHIR —they will not result as function calls in hardware. ferent Click configurations: “router” and “pipe”. Router
Because we have constant arguments 1Qs the configuration presented in Section 4, performing
el ement push(), constant propagation and inlining |p header checking and destination port selection based
passes have succesfully removed it, leaving the contentsn the destination IP address. Pipe is the simplest config-
of the original si npl e.action() inlined in the yration possible, it only connects NetFPGA ports in two
wrapper function. The core operation, checking that theyajrs, i.e. when sending a packet to port 0, it is forwarded
IP packet s at least 20 bytes long, is visible in the LLVM tg port 1 and vice versa. The same handling is present for
representation before the first branch instructibn)('  ports 2 and 3. There is no actual Click packet processing,
In case the packet is too shaathi r packet free()  the only elements used are FromFPGA and ToFPGA.
is called to free the memory slot storing the packet analysing the results, we can see that the reference
and ahi r gl uechk() returns. Otherwise, at the gyiich handles the maximum load we can feed. From
end of the functionwriteuintptr() is called, previousexperiments, we know that it has been designed
1The whole function is not presented in the listing due to spac tO D€ running at line rate. Even though we have continu-
constraints. ously improved our toolchain and the wrapper libraries,




Program 3 Generated ahiglue chk()

@ = internal constant [8 x i8] c"chk_inO\00"

define void @hir_glue_chk() {
entry:
% = call 132 @ead_uintptr(i8* getelementptr inbounds ([8 x i8] @,
i32 0, i32 0))
% = inttoptr 132 %9 to %truct. Packet *
call void @l enent_push(%truct. El ement* getel enentptr i nbounds
(%struct. Checkl PHeader+ @hk, i32 0, 132 0), i32 0, %truct.Packet* %)
ret void

Program 4 Optimised ahirglue chk()

@ = internal constant [8 x i8] c"chk_inO\00"
@ = internal constant [8 x i8] c"rtt_inO\00O"

define void @hir_glue_chk() {

entry:
% mpl3 = tail call 132 @ead_uintptr(
i 8« getelenentptr inbounds ([8 x i8]* @, i32 0, i32 0))
% npld = inttoptr i32 % npl3 to Y%struct. Packet *
% npl5 = getel enentptr inbounds %truct.Packet* % npl4, i32 0, i32 3
% npl6 = load i 8+ % npl5, align 4
% nmpl7 = getelenentptr i8* % npl6, i32 14
% nmpl8 = getel enentptr inbounds %truct.Packet* % npl4, i32 0, i32 4
% npl9 = load i 8+ % npl8, align 4
% np20 = ptrtoint i8x % npl9 to i32
% np21 = ptrtoint i8x % npl6 to i32
% nmp22 = sub nsw i 32 % np20, % nmp21
% mp23 = add i 32 % mp22, -14
% mp24 = icmp slt i32 % nmp23, 20

br i1 % np24, |abel %3.il1", label %4.i"

"3.11":
tail call void @bhir_packet free(i32 % npl3)
br | abel % ZN7El ement 4pushEi P6Packet . exi t

400"

% mp70 = ptrtoint Y%truct. Packet> % npld to i32
tail call void @wite_uintptr(i8* getelenentptr inbounds ([8 x i8]* @,
i32 0, i32 0),
i 32 % np70)
br | abel 9% ZN7El ement 4pushEi P6Packet . exi t

_ZN/El enent 4pushEi P6Packet . exi t:
ret void

}
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Measurement Reference| Click Percent We did some experiments (using the NetFPGA ver-
PPS 98 B 415K 178K 42.9 ification environment together with the Modelsim sim-
PPS 1442 B | 84K 24K 28.6 ulator) to see the extent to which performance could
Ping 105 us 115us 109.5 be improved by targeting these bottlenecks. A univer-
Bandwidth 940 Mbps| 215 Mbps| 22.9 sal method to get more performance is to use more re-
sources, in our case FPGA slices. We could do this
Figure 3: Reference switch vs. router.click by replicating Click elements to parallelise some stages
of the pipeline. It can be done without affecting the
Measurement Referencel Click Percent packet processing logic when the replicated Click ele-
PPS 98B 415K 225K 54.2 ment doesn’t store state. As an example, we replicated
PPS 1442 B | 84K 25 5K 30.4 the Checkl PHeader element to solve the first bottle-
Ping 105 us 114 us 108.6 neck. The result was that throughput improved by 18%
Bandwidth | 940 Mbps| 227 Mbps| 24.2 over the baseline, with a corresponding increase in FPGA

resource usage of 10%. It should be noted that if we cre-
ate parallel paths for packets in an IP router, we need to
add some packet reordering mechanism to our input and
output modules, to ensure that the router operates simi-
we lack somewhat behind. We can currently reach allarly to the software version of the same Click router.
most 1/3 of the 1 Gbps line rate with large packets. With  To target the packet memory bottleneck, we doubled
smaller packets the performance is better — almost halthe memory bandwidth by making it a two-banked sys-
of the line rate, as the wrappémput needs to spend less tem. With this modification together with the element
time copying the packet to the memory subsystem. Withreplication, the throughput improvement over the base-
larger packets our wrapper libraries are the bottleneckfine was 31%, with a 19% increase in FPGA resource
and differences between the two Click configurations araisage. Thus, some simple bottleneck alleviation steps
not that large. With smaller packets, the router configu-seem to pay good performance dividends. We have not
ration is roughly 20 percent slower than the pipe config-yet tried this in actual hardware, as the FPGA chip on
uration. our NetFPGA card has limited resources, but resource

Based on an analysis of the pipeline stage latencieseplication could be useful in many applications which
(using the Modelsim simulator and the NetFPGA verifi- use larger FPGAs or ASICs.

cation scripts), we observe the following bottlenecks: The performance shortfall relative to hand-coded RTL
can be tackled at two levels. The essential problem is to

e The bottleneck which limits packet throughput for " ]
large packets is the interface between the Ne,[F_reduce the latency of the critical path through a code sec

: - tion. At the source-level, code transformations which en-
PGA datapath and the Click counterpart. Incomlnghance arallelism need to be further explored. The stan-
data from the NetFPGA datapath is written into a P P '

shared packet memory, which is byte wide, Single_dard code transformations (e.g. loop unrolling, inlining)

ported and supports one access per clock CyCIedo help, but it is worth investigating if more is possible.

Since the clock period in the NetFPGA board is As a fallback option, hand-optimised routines for critical

. . code sections can make a substantial difference (analo-
set to 8 nanoseconds, this translates to an effective

memory bandwidth of 1 Gbps, which is shared be_gous to the use of assembly language routines in perfor-

tween reads and writes. Thus, the peak availapldnance critical embedded applications). To meet our goal

throughput of the Click datapath is currently 500 of p_uttlng_no extra burde_n t_o the software programmer,
. ) . the insertion of these optimised routines should be done
Mbps, of which approximately 50% is actually be- :
. . by the toolchain.
ing achieved. _ . . .
Further, the functionality of critical code sections can
e For small packets, the bottleneck (in the “router” often be sub-divided into a sequence of simpler func-
configuration) is the latency of the IP header check-tions (pipelining the critical code segments) in order to
ing stage which was observed toheus. For short  improve the throughput of the final system. In our flow,
(98B) packets, this would limit the packet data ratecritical code sections can be redone at three levels: at the
to the 200 Mbps range, as observed. For longelC/C++ level, at thé\a level or at the VHDL level, with a
packets, this bottleneck is not as serious, and theorresponding performance/productivity trade-off as we
limit on the packet data rate would be higher. Thedescend from C/C++ to VHDL. At the hardware level,
latency of this stage needs to be reduced in order tahe AHIR toolchain in its current form is conservative
achieve higher data rates (given the constraints ofn terms of adding register stages to meet clock period
the NetFPGA card). requirements (potentially adding needless cycles to the

Figure 4: Reference switch vs. pipe.click
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latency). A more optimised mechanism for adding such [2]
register stages is likely to improve the latency.

Currently we initialise the Click router before hard- [3
ware synthesis where we discard all configuration and[4
initialisation related code. Therefore the resulting Klic |5
on-NetFPGA router cannot be live reconfigured. The g
ideal toolchain would analyse the Click configuration
and then separate parts that should be run as hardware
and those that could be left as software, and then au-
tomatically create an interface between those two. That
would allow parts of the Click router to run on a CPU
and other parts on the FPGA, similar to the approach in(7

[6].

. [8]
6 Conclusion

In this paper we have shown that it is possible to imple- [9]
ment a domain specific toolchain that converts high level
language software to hardware. We have implemented a
prototype toolchain that can transform Click routers writ- [10]
ten in C++ to a hardware description in VHDL, which
can then be synthesised and run on a NetFPGA card as
part of the Stanford reference NIC design. [11]

We use the “initialise-freeze-dump” method to trans-,,
form initialised C++ objects in memory to constants in
the output file of the front end. This way we can run the
initialisation code outside the hardware, and then use thaa]
essential parts of code directly related to packet process-
ing to form the hardware parts. Using numerous LLVM
optimisations we can then transform the code in a fornh4]
that is suitable for AHIR to transformi it further to VHDL.

The performance achieved by the hardware produced
by this toolchain is a significant fraction of that achieved
by a handwritten NetFPGA implementation. Although
work remains regarding the performance and flexibil-[1°]
ity of this specific toolchain, the results in general are
promising. The main performance bottlenecks are in the
translation between the Click and NetFPGA packet datg g
models. Changing the target, e.g. creating a packet pro-
cessing ASIC from the Click code, and using more chip
surface, would most likely bring far better performance.

[17]
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