
The Click2NetFPGA Toolchain

Teemu Rinta-aho
NomadicLab

Ericsson Research
Jorvas, Finland

Mika Karlstedt
NomadicLab

Ericsson Research
Jorvas, Finland

Madhav P. Desai
Department of Electrical Engineering

Indian Institute of Technology (Bombay)
Mumbai, India

Abstract

High Level Synthesis (HLS) is a promising technol-
ogy where algorithms described in high level languages
are automatically transformed into a hardware design.
Although many HLS tools exist, they are mainly target-
ing developers who want to use a high level program-
ming language to design hardware modules. They are not
designed to automatically compile a complete software
system, such as a network packet processing application,
into a hardware design.

In this paper, we describe a compiler toolchain that au-
tomatically transforms existing software in a limited do-
main to a functional hardware design. We have selected
the Click Modular Router as the input system, and the
Stanford NetFPGA as the target hardware platform. Our
toolchain uses LLVM to transform Click C++ code into
a form suitable for hardware implementation and then
uses AHIR, a high level synthesis toolchain, to produce
a VHDL netlist.

The resulting netlist has been verified with actual hard-
ware on the NetFPGA platform. The resulting hardware
can achieve 20-50 % of the performance compared to
version handwritten in Verilog. We expect that improve-
ments on the toolchain could provide better performance,
but for the first prototype the results are good. We feel
that one of the biggest contribution of this work is that
it shows some new principles of high-level synthesis that
could also be applied to different domains, source lan-
guages and targets.

1 Introduction

Writing packet processing applications in software offers
a flexible and easy way for experimentation and product
development. Hardware-based implementations, on the
other hand, characterised by parallel operations and in-
flexibility, result in better energy efficiency and higher
operational speed. At the same time producing hardware

is orders of magnitude more expensive in terms of both
design and manufacturing than producing software.

Click modular router [12] is a popular tool for writ-
ing software routers. Stanford NetFPGA [14] is a simi-
larly flexible platform for developing hardware routers.
While programming packet processing applications in
Click C++ is easy and flexible, describing even a sim-
ple application in VHDL/Verilog (for the NetFPGA) is a
relatively major undertaking. Combining the good sides
from both of the two could be an enabler for rapid imple-
mentation of efficient packet processing applications.

An ideal software-to-hardware toolchain would allow
one to express designs in a widely familiar program-
ming language, such as C or C++, and convert these into
a hardware implementation that could be tested in real
life, e.g. using the NetFPGA. Unfortunately, our limited
testing of the existing HLS (High-Level Synthesis) tools
indicated that they are definitely not ready to take an
existing software system and transform that into hard-
ware [15].

In this paper, we describe an experimental toolchain
that is able to transform existing, software-oriented C++
algorithms—within the limited domain of Click-based
packet processing—into a hardware description. We have
chosen to work with the LLVM compiler toolkit [13], as
there is a wide variety of tools and an active develop-
ment community working on LLVM. This allows us to
take advantage of the existing LLVM-based parallelising
optimisations. LLVM modularity also allows us to eas-
ily write our own transforming compiler passes, and to
add our own back end, a non-commercial HLS toolchain
called AHIR [17].

The Click2NetFPGA Toolchain has a different ap-
proach than the existing HLS tools. While it also has
some restrictions on what type of source code can be
used as input, it transforms a complete software system
into a hardware design – automatically. By selecting a
restricted source domain, it was possible to have certain
assumptions, and create a toolchain that could in practice



do what hasn’t been done before – translating a software
router to a hardware router. Our current approach com-
bines typical software-oriented optimisations and some
parallelising optimisations together with compile-time
generated constant data structures and constant propaga-
tion. Our compiler front end lowers the original Click
programs into versions that are more suitable for gener-
ating VHDL with the AHIR backend.

The version of our toolchain presented earlier [15] was
about exploring the possibilities of some commercially
available HLS tools as the backend of our toolchain.
In this paper, we describe the second version of the
toolchain. We have switched from a commercial backend
to AHIR and rewritten the front end from scratch, build-
ing on the knowledge gained when working with the pre-
vious version. Since the second report of our work [16],
we have modified the interface between Click and NetF-
PGA code, improved the performance and usability of
the toolchain and have been able to evaluate some Click
configurations on a NetFPGA card and in the Modelsim
simulator.

In Section 2 we give a brief look onto the essential
background information, in Section 3 we outline the op-
eration of the toolchain, in Section 4 we go into the de-
tails with a usage example, Section 5 is on evaluation
and, finally, in Section 6 we conclude the paper.

2 Background

In this section, we describe some existing related work
and then we go into the major components that we have
used to build our toolchain and its input and target sys-
tems.

2.1 Related Work

Over the years, several academic and commercial high-
level synthesis research results and tools have been intro-
duced. As already mentioned, most put some restrictions
on the input programming language, or are solving a spe-
cific optimisation problem.

Trident is using LLVM to generate parallel hardware
circuits from floating point algorithms. It doesn’t allow
e.g. recursion,malloc or free calls, function argu-
ments or returned values [18].

LegUp introduces creating a soft MIPS processor and
hardware accelerators that communicate through a bus
interface. It uses LLVM to profile running software to
identify candidate parts for hardware acceleration. The
rest of the code is run as software on the MIPS pro-
cessor, including code using dynamic memory, floating
point and recursion [6].

The UCLA xPilot project developed a high level syn-
thesis toolchain using LLVM [8] which evolved into a

product, the AutoPilot from AutoESL, later bought by
Xilinx [1]. The AutoESL High-Level Synthesis Tool ac-
cepts synthesisable ANSI C, C++ and SystemC as input.

The Click2NetFPGA Toolchain has one major differ-
ence to those listed above. It transforms a complete soft-
ware system into a hardware design – automatically. Pre-
vious works either hardware accelerate certain parts of a
software program, or completely synthesise only smaller
units, such as single functions, that can then be used
as parts of a hardware design. Click2NetFPGA takes a
complete Click software router and transforms the packet
processing functionality into the NetFPGA environment.
By having this restricted source domain, it was possible
to have certain assumptions (such as Click code having
no recursion), and create the prototype toolchain.

Our toolchain is more of a “system-to-system” com-
piler, than yet another HLS tool. Besides the source soft-
ware, the toolchain takes the system description, i.e. the
Click router configration as an input. While many of the
existing HLS tools could be used to compile single Click
C++ elements into Verilog or VHDL, they wouldn’t be
able to connect these elements together nor to interface
them correctly on the target system – the NetFPGA.
Some of the existing HLS tools could be added to the
Click2NetFPGA toolchain, either to perform a certain
new optimisation, or then the toolchain could have been
completely built upon some other tool than the AHIR
that we chose. Before selecting AHIR, we did evaluate
a number of commercial HLS tools [15]. AHIR suited
our purposes better, as it is an open source project and
we were free to modify it along our project.

2.2 LLVM

LLVM [13] is a collection of modular components for
building compiler toolchains. The LLVM components
operate on an intermediate language, called the LLVM
Intermediate Representation (LLVM IR). The LLVM
core consists of a compiler driver, a number of analysis
and code optimisation passes, and a debugger. Several
front ends and backends are using LLVM: clang [2] is
intended as a replacement for GCC. The Dragonegg plu-
gin [3] allows to replace the GCC optimisers with those
from LLVM, thereby enabling all the GCC supported
languages and targets to be optimised with LLVM.

LLVM has been used to implement a variety of lan-
guage toolchains, including previous approaches to gen-
erate hardware [18] and bit-level optimisation of HLS
data flows [19]. TCE [9] is a set of tools for designing
processors based on Transport Triggered Architecture.
TCE uses the LLVM clang [2] compiler as the front end
for compiling hardware designs written in C and C++.

2



2.3 AHIR

AHIR [17] is a backend for LLVM that transforms
LLVM bytecode to VHDL. It is a toolchain on its own,
consisting of several different tools with intermediate re-
sult files. AHIR is still a work in progress and several of
its shortcomings were discovered and fixed during this
project.

The LLVM IR is first translated to an AHIR assem-
bly language program (anAa program). TheAa pro-
gramming language corresponds to a hierarchically con-
structed Petri net (the type II Petri net), in which paral-
lelism as well as complex control flow can be expressed
in a direct manner. In anAa program, storage variables
and first-in-first-out pipes are natural objects which can
be used for communication between different parts of the
program. SeveralAa programs can be linked together us-
ing anAa linker.

A linked Aa program is then transformed to avir-
tual circuit or vC program, in which the control-flow,
data-flow and storage aspects of the sourceAa program
are separated out (and optimised). The primary optimi-
sations possible at this stage are: resource sharing, de-
pendency analysis, and clustering of storage into disjoint
memory spaces. ThevC program is further translated to
a VHDL description, which can be directly synthesised
to target an FPGA or ASIC implementation.

The current version of AHIR supports a wide set
of LLVM IR—the few notable exceptions are function
pointers and recursion.

2.4 Click Modular Router

Click was introduced by Eddie Kohler [11] as a platform
for developing software routers and packet processing
applications. A packet processing application is assem-
bled from a collection of simpler elements that imple-
ment basic functions, such as packet classification, queu-
ing, or interfacing with other network devices. The ele-
ments are assembled into a directed graph using a con-
figuration language and packets flow along the links of
the graph. Click provides some features to simplify writ-
ing complex applications, including pull connections to
model packet flow driven by hardware and flow-based
contexts to help elements locate other relevant elements.
Since its introduction, Click has been used as a tool for
research into a wide variety of packet processing applica-
tions. Some representative examples are multiprocessor
routers [7] and prototyping a new architecture for large
enterprise networks [10].

Click modules use the full power of C++ as an object-
oriented programming language, including virtual func-
tions and dynamically allocated memory. While these
language constructs facilitate code reuse and ease of pro-

gramming, they complicate the task of synthesising hard-
ware from the software.

2.5 NetFPGA

The NetFPGA platform [14] provides a platform for re-
searchers who are interested in investigating line speed
packet processing applications. It is similar to Click in
the sense that it provides a set of building blocks and
the user can extend the system by introducing new build-
ing blocks as well. Within this framework, students and
researchers can write code to implement a variety of
routing and packet processing applications that are then
synthesised into hardware. The NetFPGA board can be
plugged into a PC providing control plane support, and
the resulting application can be tested at line speed in
actual networks.

The first version of the NetFPGA platform provides a
hardware board with a Xilinx Virtex-II Pro FPGA and a
Verilog framework supporting hardware with a PCI bus
and four 1 Gbps Ethernet ports. There is also a newer ver-
sion of the NetFPGA available with four 10 Gbps Ether-
net ports, a faster and bigger FPGA and more memory.
We are currently using the first version of the card for
this project.

3 Overview of the Toolchain

We call this prototype software a “toolchain”, although
it could also be called or thought of as a “compiler”,
as it compiles a Click router into a NetFPGA compat-
ible hardware design. However, it is more a chain of
tools: Click2LLVM, LLVM, AHIR, NetFPGA SDK, Xil-
inx ISE and several shell scripts, bound together by a
couple of Makefiles. We are running the toolchain on
Linux, but it could be ran on e.g. FreeBSD or Mac OS
X with minor modifications, at least until the synthesis
(Xilinx) stage, as Xilinx ISE is only available for Linux
and Windows.

The Click2NetFPGA toolchain consists of five main
stages:

1. Compile Click elements

2. Link required files into an LLVM Module

3. Run transformations

4. Convert to VHDL

5. Create the netlist

This process is depicted in Figure 1. The goal of the
first step is to compile all Click elements and library
classes into linkable object files as well as LLVM IR

3



Figure 1: The Click-to-NetFPGA toolchain

source files. This stage needs to run only initially and
when Click source code is modified.

In the second stage,click2llvm — the front end
of the toolchain — reads the user-provided Click con-
figuration file where elements and their connections are
defined. The corresponding linkable object files are then
loaded by theclick2llvm tool with a Click library
function.

After loading and initialising the Click router in the
click2llvm process memory space,click2llvm
reads the initialised values from memory and writes them
out as constants in the LLVM IR format using LLVM li-
brary routines.click2llvm also generates some wrap-
per code and imports the library functions that the ele-
ments are calling. All the required code is inserted to an
LLVM Module that is written out as a single LLVM IR
file (Linked IR).

The resulting LLVM Module needs several transfor-
mations and optimisations so that AHIR can transform
it to VHDL. First trick is to replace thethis argument
in functions with a constant variable (the Click element
of the same type). For this, we have written our own
LLVM transformation pass. This makes most functions
constant and enables better constant propagation optimi-
sation later. Then we run LLVMopt with a number of
optimisation passes, including constant propagation and
inlining. For inlining, we use high inline treshold to get
as much inlining as possible. Finally, we run a script on
the LLVM module that replaces calls to LLVM intrinsics
(e.g. memcpy) with calls to our own implementations of
those functions.

Finally, there will be no function calls, loops or other
non-synthesisable constructs left, partly due to our sev-

eral transformations, partly due to the nature of Click
code. It might be possible to write e.g. recursive code
in a Click element, but in practice most Click elements
can be transformed into a synthesisable form. The AHIR
toolchain reads this transformed LLVM IR file and cre-
ates a VHDL file.

In the last phase the toolchain takes the VHDL gener-
ated by the AHIR and combines it with a VHDL wrap-
per and Verilog files from the NetFPGA SDK and uses
the Xilinx toolchain to create a netlist. The netlist can
then be loaded to the NetFPGA. If the resulting netlist is
too big to load, it will be only found out at the very end.
It would be good to add a checking stage earlier in the
toolchain for the required vs. available FPGA resources.
This would require adding some analysis steps into the
toolchain and is left for further study.

4 Implementation Details

In this section we will take a closer look on the imple-
mentation of the toolchain. First we will describe the re-
sulting hardware architecture, and then go into more de-
tails. We’ll describe the changes to Click, the step from
Click to LLVM by the front end and transformations on
the LLVM IR Module. Then we will explore the creation
of the netlist by AHIR. At the end of the section we have
a usage example on how a specific Click configuration
gets compiled by the toolchain.

4.1 Resulting Hardware Architecture

The final system generated by AHIR has a single pair
of input data/control pipes and a single pair of out-

4



Figure 2: The resulting architecture

put data/control pipes which interface to the NetFPGA
pipeline: Internally, the modules inside the AHIR system
are of two types:

• Those that are “always on”: these modules listen on
input pipes, process data, and send processed data
out on output pipes (essentially, these are pipe-line
stages). Pipe accesses are blocking in nature, that is,
a read from a pipe blocks until there is something in
the pipe available to be read, and a write blocks until
the pipe has room for new data.

• Those that are “called”: these are invoked by input
control signals, and normally have input and output
arguments. When the module “finishes”, it indicates
this to the invoker, who can then use the output ar-
guments produced by the module. These modules
correspond to sub-routines invoked during system
operation.

A Click configuration consists of a set of Click ele-
ments that exchange packet pointers over port connec-
tions. The pointers are used by the elements to access
packets from the main memory. We have translated an
input Click configuration to a set of ”always on” AHIR
modules where each module implements the behaviour
of one Click element and the connections between Click
elements are mapped to writing and reading from a
named pipe that connects the elements (see Figure 2,
where a “W” stands forwrite uintptr() and an

“R” for read uintptr() – note that the figure rep-
resents a “snapshot of the system in time”, where 3 dif-
ferent packets are being processed by different modules
– it is not a description of the hardware with all wires
drawn to be visible.). The result is a collection of inter-
acting AHIR modules (a pipeline) which implements the
original Click configuration.

The Click framework defines a packet as a distinct in-
memory object that can be created, copied, and deleted.
The size of the packet may change during its lifetime,
which can also affect the space it occupies in the mem-
ory. In our implementation, the available memory for
packets is divided into a set of fixed-size buffers. A
packet inside the system is then identified by the pointer
to the buffer which it occupies.

The packet buffers are managed using queues. A
“free queue” (see Figure 2) contains pointers to cur-
rently free slots for packets. In addition, queues
are provided between elements to hold packets that
are in transit. The moduleswrapper input() and
wrapper output() are static pieces of C++ and Aa
code which provide the functionality needed to obtain
a free packet buffer, fill it with incoming packet data,
pass the incoming packet pointer to the Click mod-
ules, receive the outgoing packet pointer from the Click
pipeline, send out the outgoing packet and release the
packet buffer. These are linked into the Click-based mod-
ules by the AHIR toolchain (see Figure 2). The linked de-
sign is then used to replace the output port lookup mod-

5



ule of the NetFPGA reference NIC design.

4.2 New Target for Click

Click consists of a runtime library and a large set of
standard elements. The library implements the essential
components, such as the Element, Packet, and Router
classes, altogether some 80 classes. Click can be com-
piled as a userspace program on e.g. Linux, FreeBSD or
Mac OS X, or as a kernel module for Linux. Certain parts
of the library differ between these targets, e.g. in Linux
kernel nativeskb structures are used to represent pack-
ets. When compiled as a userspace program, packets are
stored in the memory area of the runningclick process.

We have added yet another compilation target for
Click: NetFPGA. The modifications are implemented
with similar precompiler instructions and often in the
same functions or methods which already differed be-
tween Linux kernel and userspace implementations. One
example of such a modification is the creation of a
new packet through thePacket::make() method.
In the Linux kernel anskb is referenced fromClass
Packet, while in userspace Click, memory is allocated
dynamically from process memory space. In NetFPGA,
we request a memory address for a block of pre-allocated
BRAM. This BRAM is defined in C++ as an array of
bytes, that is transformed to VHDL by AHIR. By de-
fault, we have allocated 32 KB of BRAM that can hold
16 packets, each having maximum size of 2 KB. A “free
queue” is used to record which BRAM slots are in use
and which ones are free. Access to the free queue is
managed by AHIR primitives so that only one request
is served at a time.

While we have modified some existing Click libraries
and C++ classes, such as the Element and Packet Classes
to map method implementations to AHIR primitives in-
stead of Linux kernel or user space, our goal has been to
require no modifications to the existing Click elements
and to require no new guidelines for writing new Click
elements. The goal is to let the programmer concentrate
on describing packet processing in Click C++ without
having to consider that it might be compiled to hard-
ware instead of software—as it is of no concern whether
the target platform for a software compilation would be
Linux or FreeBSD.

4.3 Compiling Click Configurations

A Click configuration defines a particular assembly of
Click elements, thereby constructing a packet processing
application or, in Click terms, a Router. In practise, when
the userlevelclick tool is used to execute the router,
the tool first parses the configuration, then initialises the
router, and finally starts packet processing. In the typical

case, the packet processing phase then continues until the
user terminates it. In our toolchain, the first two steps of
this process are performed by theclick2llvm com-
piler. The last, actual packet processing step is then per-
formed by the synthesised hardware.

When Click parses and initialises a configuration, it
also instantiates all the elements defined in the configu-
ration and invokes the initialisation methods of the result-
ing element instances. In practise, the elements are either
statically compiled to the tool itself, or theclick tool
dynamically loads the elements into its address space
from a dynamically linked shared library. The tool then
instantiates the C++ classes representing the elements
and invokes their virtual methods to configure and ini-
tialise them.
click2llvm is essentially identical with theclick

userlevel tool up to this point. While the standard
tool would now initiate packet processing, our com-
piler writes out the resulting initialised router. For this,
click2llvm uses LLVM libraries to link all neces-
sary Click elements as pre-compiled LLVM modules
into a single LLVM module. It then uses the LLVM
StructLayout API to find the memory locations for
different fields of the Click elements. These memory lo-
cations represent the instance variables of the C++ Click
classes. It then iterates through each Click element of the
Router, and writes an LLVM Global Variable for each
Click element into the LLVM Module. Each element be-
comes a global constant struct in the resulting module.

Normally, when a packet is received inclick, it calls
the push() or simple action() of the first ele-
ment in the configuration. After finishing with the packet
processing tasks, the current element then either drops
the packet or calls thepush() or simple action()
method of the next element in the configuration and so
on. When the final element has finished the call stack re-
turns and the first element reads the next packet. While
this is a flexible way to operate in software, in hardware
all Click elements will be continuously running in paral-
lel, and we need a different approach.

In Click, connections between elements are C++
pointers. For each packet (that is not simply dropped)
a Click element needs to decide the outgoing port. Dur-
ing the initialisation of the router, the port table of each
element is populated with pointers to appropriate next
elements based on the Click configuration file. In our
solution, we replace the pointers with names of AHIR
pipes. Instead of calling the function pointer from the
port, we send the memory address of the packet through
a pipe linked to the aforementioned port. We have imple-
mented this by creating a NetFPGA specific implemen-
tation of theElement::Port::push(). Instead of
calling the methods of the next element through pointers,
we call functionwrite uintptr() which AHIR will

6



later interpret as a write to a named pipe. The name of the
pipe is stored in theElement::Port Class. This way
we get rid of the C++ call stack and are able to create
separate hardware modules for each Click element that
will run in parallel, connected by named pipes. We didn’t
have to implement a NetFPGA counterpart for the C++
call stack, as AHIR takes care of passing the arguments
and return values for function calls.

Finally, we write out a single LLVM Module in the
LLVM IR language that contains the source code for the
Click elements, required parts of the Click library (such
as theElement andPacket classes), constants that
represent initialised elements, and a wrapper function for
each element. The wrapper function maps the element to
a separate program that reads packets from input ports,
processes those packets and writes them to appropriate
output ports (see Program 3).

Some Click elements use C++ library functions like
memcpy(), ntohs() or clock gettime(). The
C++ compiler leaves these in the IR as “llvm intrinsics”,
which means that the compiler backend needs to map
these calls to the target-specific implementations (on a
Unix based system it would be the C++ runtime library).
To achieve this, we insert LLVM instructions that im-
plement the same functionality. For some, we currently
do not have a counterpart, like forclock gettime().
So far, we have implemented the required functions on-
demand. It should be noted, however, that to support any
(future) Click element, all system calls should be imple-
mented on the NetFPGA. This is left as future work.

In the current prototype, we transfer all code into the
NetFPGA. In practice, it would make more sense to anal-
yse the software, and leave parts of the code to be run as
software on the host CPU. This would also require auto-
matic generation of interface code between software and
hardware. However, with this prototype we have concen-
trated on the problem of software to hardware transla-
tion, and we leave this analysis and divisioning problem
for further study.

4.4 Optimisation Phase

The LLVM Module created by theclick2llvm tool
is still unoptimised and contains constructs such as func-
tion pointers that don’t easily map to hardware. We use a
number of LLVM passes to transform these constructs in
a more suitable form.

The first pass replaces thethis argument in the C++
originated methods with the global variable represent-
ing the Click element. As a result the method becomes
a constant function and can be inlined later. Although
this means that we can have only one instance of each
Click element class, the limitation can be removed, ei-
ther with the trivial approach of replicating the methods

and naming them differently, or writing a pass that splits
thethis argument to two: one pointing to the constant
part of the class and another to the part holding instance-
specific variables. The latter approach requires splitting
the types in two as well. We feel this is all doable and
could benefit optimising C++ software in general.

Next we pass the LLVM optimiser a list of the wrap-
per functions that need to be considered as the “API”, and
thus preserved in the output. “API” here means the same
as themain() function in regular C/C++ programs –
a starting point for program execution that is not called
from within the program – that shouldn’t be optimised
away as “dead code”. Temporary helper function defi-
nitions (element push(), see Program 3) and other
dead code gets optimised away and is not preserved in
the output. Since the Click elements are constants, we
get good results with the constant propagation and in-
lining passes. We use-inline-threshold=10000
to get all packet processing code, e.g. thepush()
or simple action() function of the corresponding
Click element inlined in the wrapper function. We also
use several other standard passes provided by the LLVM
project.

4.5 Creating a Netlist

The collection of (optimised) LLVM modules produced
by click2llvm is run through the AHIR toolchain
which produces an AHIR system (described in VHDL).

Each LLVM module is implemented as an AHIR mod-
ule (described as a VHDL entity/architecture pair). The
AHIR module itself implements the control and data flow
in the LLVM module with some optimisations; depen-
dency analysis is used to extract parallelism from se-
quential statement blocks, and expensive operators (such
as multipliers) are shared by multiple operations. Stor-
age variables described in the LLVM Module collection
are implemented as declared. In the AHIR system, stor-
age variables are organised into disjoint memory spaces
based on a static alias-analysis of the source program
In addition, the AHIR system implements the concept
of pipes (finite depth first-in-first-out queues) for inter-
module communication and synchronisation. Thus, two
modules in an AHIR system can communicate either
through storage variables or through pipes.

The translation process in the AHIR tool-chain itself
consists of three steps. In the first step, the LLVM IR
is translated to an AHIR assembly level (Aa) program.
Aa is an imperative and block-structured language which
supports a large variety of types. The flow of control in
anAa program block can be specified to be sequential or
parallel. During this translation:

• Each LLVM module is translated to an equivalent

7



Aa module. All blocks in the resultingAa program
are sequential in nature.

• Declared storage variables in the LLVM IR are
mapped to declared storage variables in theAa pro-
gram.

• Pipes are inferred from the LLVM IR by
keying off the special functionsuintptr
read uintptr(const char* pname) (this
is translated as a read from a pipe with the specified
name) and void write uintptr(const
char* pname, uintptr ptr) (translated as
writing the value ptr into the pipe with the specified
name).

The second step is the conversion of theAa program
to a virtual circuit in which the control flow, data flow
and storage aspects of theAa program are separated.
At this stage, dependency analysis is used to extract the
maximum amount of parallelism that is possible from
sequential statement basic-blocks. Storage variables are
segregated into disjoint memory spaces whenever possi-
ble (disjoint spaces reduce load/store dependencies, and
further, are accessible in parallel). The virtual circuit
itself consists of distinct modules which communicate
with each other through pipes or through shared mem-
ory spaces.

The final step is to generate the VHDL netlist from the
virtual circuit. This translation uses a VHDL library of
predesigned components such as operators, pipes, mem-
ory spaces, arbiters etc. Virtual circuit modules are trans-
lated to VHDL entities (currently, each such entity is in-
stantiated once in the final system). Pipes are modeled in
a direct manner, as are the memory spaces. Concurrency
analysis is carried out in the modules to determine opera-
tions which can be mapped to the same operator without
the need of arbitration. Further, depending on command
line switches, the generated VHDL can be optimised for
clock-period, and/or for area, or for cycle-count etc. We
optimise the netlist to obtain the minimum area (given
the constraints of the NetFPGA card) with a primary ob-
jective and the minimum clock period a secondary ob-
jective (in order to meet the 8 nanosecond clock period
requirement of the FPGA on the NetFPGA card).

4.6 Usage Example

To illustrate the operation of the toolchain, we will go
through the steps leading from the Click configuration
to the optimised LLVM IR. We have created a config-
uration (see Program 1) which does packet switching
based on the destination IPv4 address. The configuration
contains seven different Click elements. FromFPGA and
ToFPGA* elements in the configuration come from our

ownminimal-package, thus therequire declara-
tion on the first line. We currently require the elements
to be introduced and given names, which is done on the
next seven lines. The last five lines describe the flow of
packets between the elements.

Program 1 router.click
require(package "minimal-package");
src :: FromFPGA;
to0 :: ToFPGA0;
to1 :: ToFPGA1;
to2 :: ToFPGA2;
to3 :: ToFPGA3;
chk :: CheckIPHeader(14);
rtt :: LinearIPLookup(172.16.0.0/24 0,

172.16.1.0/24 1,
172.16.2.0/24 2,
172.16.3.0/24 3);

src -> chk -> rtt;
rtt[0] -> to0;
rtt[1] -> to1;
rtt[2] -> to2;
rtt[3] -> to3;

Program 2 CheckIPHeader::simpleaction()
Packet *
CheckIPHeader::simple_action(Packet *p)
{

const click_ip *ip =
reinterpret_cast<const click_ip *>
(p->data() + _offset);

unsigned plen = p->length() -
_offset;

unsigned hlen, len;

if ((int)plen <
(int)sizeof(click_ip))

return drop(MINISCULE_PACKET, p);
...
return(p);

}

ElementsFromFPGA andToFPGA* are special ele-
ments that interface the Click/NetFPGA wrapper. They
are for convenience (to have static wrapper code) and
also as placeholders for code to transform packets be-
tween the NetFPGA and Click worlds. FromFPGA cal-
culates the Click-specific packet lengths and offsets and
stores them in the packet—this way the wrapper needs
no modifications if Click itself is updated. ToFPGA does
the reverse, mapping Click-specific fields into NetFPGA

8



control flags. We have created a separate ToFPGA ele-
ment for each physical NetFPGA port: ToFPGA0 sends
the packets to port 0, ToFPGA1 to port 1, and so on.

To illustrate the mapping from Click C++ code and the
Click configuration file to LLVM IR, we take a closer
look at one of the used elements and parts of its packet
processing code. Program 2 shows a part of the C++
source code for the packet processing code of Click ele-
mentCheckIPHeader. Methodsimple action()
is part of the Click API, and is called for the packet
if the element has defined it. In theCheckIPHeader
element, various standard checks are performed on an
IP packet. A valid packet is forwarded to the next ele-
ment, while packets failing a test will be dropped. The
simple action() function of CheckIPHeader con-
sists of several checks, but we focus here on the first test,
where the size of the IP packet is checked.

After running the click2llvm tool with the
router.click configuration, we generate a wrap-
per function namedahir glue chk() in the result-
ing LLVM IR Module (see Program 3). First there is a
call to read uintptr() with the first argument be-
ing a pointer to the constant@1. This maps to a block-
ing read of an AHIR pipe and returns when there is
something written in queuechk in0. Writing to this
queue is done by theFromFPGA element, as described
in the router.click. Next, the read pointer is cast
to type struct.Packet, which represents the C++
Class Packet of Click. Then a temporary helper
function element push() is called with two argu-
ments: a pointer to the Click element (@chk) and the
current packet (%1). Thisahir glue chk() function
becomes an “always on” AHIR hardware module – its
software counterpart would be a loop that never termi-
nates.

After optimisations on the LLVM Module, the opti-
mised version ofahir glue chk() (see Program 4)
is longer, but it has everything inlined1. The only
calls to external functions areread uintptr() and
write uintptr(), which are only keywords for
AHIR – they will not result as function calls in hardware.

Because we have constant arguments to
element push(), constant propagation and inlining
passes have succesfully removed it, leaving the contents
of the original simple action() inlined in the
wrapper function. The core operation, checking that the
IP packet is at least 20 bytes long, is visible in the LLVM
representation before the first branch instruction (br).
In case the packet is too short,ahir packet free()
is called to free the memory slot storing the packet
and ahir glue chk() returns. Otherwise, at the
end of the function,write uintptr() is called,

1The whole function is not presented in the listing due to space
constraints.

leading to theLinearIPLookup element, as per the
router.click configuration (see Program 1).

5 Evaluation

We have compared the performance of the Click-based
design vs. the Stanford reference switch implementa-
tion that is distributed with the NetFPGA software pack-
age. The former is generated with our toolchain while
the latter is handwritten in Verilog. While we can see
that we cannot yet reach the same performance with our
toolchain, the results prove that our toolchain runs. We
would like to remind that this is a proof-of-concepts pro-
totype, yet we feel that it could be possible to reach better
performance levels by further optimising our toolchain,
e.g. by rewriting some Click library implementations to
better match the packet processing model of the NetF-
PGA.

Tests performed were PPS (Packets Per Second for 98
and 1442 byte packets), Ping (average round-trip time
for an ICMP Echo request/reply message pair) and max-
imum bandwidth (TCP for 60 seconds).

For bandwidth tests we have used iperf v2.0.4 [4] and
for the ping test the standard Ubuntu Linuxping com-
mand. For packets per second test we have used tcpreplay
v3.4.3 [5] on the sending host and iptables on the receiv-
ing host to find the approximate maximum number of
packets per second before NetFPGA starts to drop pack-
ets. As the results show, we did not need more accurate
measurement tools to find differences at this stage.

The test setup consisted of two standard PCs with gi-
gabit ethernet interfaces running Ubuntu. The PCs were
connected to two ports of the NetFPGA card in the third
Linux machine running CentOS. With our PCs, we were
able to send maximum of about 415,000 packets per
second when the packet size was 98 bytes (equals 325
Mbps), and 84,000 packets when size was 1442 bytes
(equals 969 Mbps).

We compared the Stanford reference switch to two dif-
ferent Click configurations: “router” and “pipe”. Router
is the configuration presented in Section 4, performing
IP header checking and destination port selection based
on the destination IP address. Pipe is the simplest config-
uration possible, it only connects NetFPGA ports in two
pairs, i.e. when sending a packet to port 0, it is forwarded
to port 1 and vice versa. The same handling is present for
ports 2 and 3. There is no actual Click packet processing,
the only elements used are FromFPGA and ToFPGA.

Analysing the results, we can see that the reference
switch handles the maximum load we can feed. From
previous experiments, we know that it has been designed
to be running at line rate. Even though we have continu-
ously improved our toolchain and the wrapper libraries,

9



Program 3 Generated ahirglue chk()
@1 = internal constant [8 x i8] c"chk_in0\00"

define void @ahir_glue_chk() {
entry:

%0 = call i32 @read_uintptr(i8* getelementptr inbounds ([8 x i8]* @1,
i32 0, i32 0))

%1 = inttoptr i32 %0 to %struct.Packet*
call void @element_push(%struct.Element* getelementptr inbounds
(%struct.CheckIPHeader* @chk, i32 0, i32 0), i32 0, %struct.Packet* %1)

ret void
}

Program 4 Optimised ahirglue chk()
@1 = internal constant [8 x i8] c"chk_in0\00"
@6 = internal constant [8 x i8] c"rtt_in0\00"

define void @ahir_glue_chk() {
entry:

%tmp13 = tail call i32 @read_uintptr(
i8* getelementptr inbounds ([8 x i8]* @1, i32 0, i32 0))

%tmp14 = inttoptr i32 %tmp13 to %struct.Packet*
%tmp15 = getelementptr inbounds %struct.Packet* %tmp14, i32 0, i32 3
%tmp16 = load i8** %tmp15, align 4
%tmp17 = getelementptr i8* %tmp16, i32 14
%tmp18 = getelementptr inbounds %struct.Packet* %tmp14, i32 0, i32 4
%tmp19 = load i8** %tmp18, align 4
%tmp20 = ptrtoint i8* %tmp19 to i32
%tmp21 = ptrtoint i8* %tmp16 to i32
%tmp22 = sub nsw i32 %tmp20, %tmp21
%tmp23 = add i32 %tmp22, -14
%tmp24 = icmp slt i32 %tmp23, 20
br i1 %tmp24, label %"3.i1", label %"4.i"

"3.i1":
tail call void @ahir_packet_free(i32 %tmp13)
br label %_ZN7Element4pushEiP6Packet.exit

"4.i":
...
%tmp70 = ptrtoint %struct.Packet* %tmp14 to i32
tail call void @write_uintptr(i8* getelementptr inbounds ([8 x i8]* @6,

i32 0, i32 0),
i32 %tmp70)

br label %_ZN7Element4pushEiP6Packet.exit

_ZN7Element4pushEiP6Packet.exit:
ret void

}

10



Measurement Reference Click Percent
PPS 98 B 415K 178K 42.9
PPS 1442 B 84K 24K 28.6
Ping 105 us 115 us 109.5
Bandwidth 940 Mbps 215 Mbps 22.9

Figure 3: Reference switch vs. router.click

Measurement Reference Click Percent
PPS 98 B 415K 225K 54.2
PPS 1442 B 84K 25.5K 30.4
Ping 105 us 114 us 108.6
Bandwidth 940 Mbps 227 Mbps 24.2

Figure 4: Reference switch vs. pipe.click

we lack somewhat behind. We can currently reach al-
most 1/3 of the 1 Gbps line rate with large packets. With
smaller packets the performance is better – almost half
of the line rate, as the wrapperinput needs to spend less
time copying the packet to the memory subsystem. With
larger packets our wrapper libraries are the bottlenecks
and differences between the two Click configurations are
not that large. With smaller packets, the router configu-
ration is roughly 20 percent slower than the pipe config-
uration.

Based on an analysis of the pipeline stage latencies
(using the Modelsim simulator and the NetFPGA verifi-
cation scripts), we observe the following bottlenecks:

• The bottleneck which limits packet throughput for
large packets is the interface between the NetF-
PGA datapath and the Click counterpart. Incoming
data from the NetFPGA datapath is written into a
shared packet memory, which is byte wide, single-
ported and supports one access per clock cycle.
Since the clock period in the NetFPGA board is
set to 8 nanoseconds, this translates to an effective
memory bandwidth of 1 Gbps, which is shared be-
tween reads and writes. Thus, the peak available
throughput of the Click datapath is currently 500
Mbps, of which approximately 50% is actually be-
ing achieved.

• For small packets, the bottleneck (in the “router”
configuration) is the latency of the IP header check-
ing stage which was observed to be4.2µs. For short
(98B) packets, this would limit the packet data rate
to the 200 Mbps range, as observed. For longer
packets, this bottleneck is not as serious, and the
limit on the packet data rate would be higher. The
latency of this stage needs to be reduced in order to
achieve higher data rates (given the constraints of
the NetFPGA card).

We did some experiments (using the NetFPGA ver-
ification environment together with the Modelsim sim-
ulator) to see the extent to which performance could
be improved by targeting these bottlenecks. A univer-
sal method to get more performance is to use more re-
sources, in our case FPGA slices. We could do this
by replicating Click elements to parallelise some stages
of the pipeline. It can be done without affecting the
packet processing logic when the replicated Click ele-
ment doesn’t store state. As an example, we replicated
theCheckIPHeader element to solve the first bottle-
neck. The result was that throughput improved by 18%
over the baseline, with a corresponding increase in FPGA
resource usage of 10%. It should be noted that if we cre-
ate parallel paths for packets in an IP router, we need to
add some packet reordering mechanism to our input and
output modules, to ensure that the router operates simi-
larly to the software version of the same Click router.

To target the packet memory bottleneck, we doubled
the memory bandwidth by making it a two-banked sys-
tem. With this modification together with the element
replication, the throughput improvement over the base-
line was 31%, with a 19% increase in FPGA resource
usage. Thus, some simple bottleneck alleviation steps
seem to pay good performance dividends. We have not
yet tried this in actual hardware, as the FPGA chip on
our NetFPGA card has limited resources, but resource
replication could be useful in many applications which
use larger FPGAs or ASICs.

The performance shortfall relative to hand-coded RTL
can be tackled at two levels. The essential problem is to
reduce the latency of the critical path through a code sec-
tion. At the source-level, code transformations which en-
hance parallelism need to be further explored. The stan-
dard code transformations (e.g. loop unrolling, inlining)
do help, but it is worth investigating if more is possible.
As a fallback option, hand-optimised routines for critical
code sections can make a substantial difference (analo-
gous to the use of assembly language routines in perfor-
mance critical embedded applications). To meet our goal
of putting no extra burden to the software programmer,
the insertion of these optimised routines should be done
by the toolchain.

Further, the functionality of critical code sections can
often be sub-divided into a sequence of simpler func-
tions (pipelining the critical code segments) in order to
improve the throughput of the final system. In our flow,
critical code sections can be redone at three levels: at the
C/C++ level, at theAa level or at the VHDL level, with a
corresponding performance/productivity trade-off as we
descend from C/C++ to VHDL. At the hardware level,
the AHIR toolchain in its current form is conservative
in terms of adding register stages to meet clock period
requirements (potentially adding needless cycles to the

11



latency). A more optimised mechanism for adding such
register stages is likely to improve the latency.

Currently we initialise the Click router before hard-
ware synthesis where we discard all configuration and
initialisation related code. Therefore the resulting Click-
on-NetFPGA router cannot be live reconfigured. The
ideal toolchain would analyse the Click configuration
and then separate parts that should be run as hardware
and those that could be left as software, and then au-
tomatically create an interface between those two. That
would allow parts of the Click router to run on a CPU
and other parts on the FPGA, similar to the approach in
[6].

6 Conclusion

In this paper we have shown that it is possible to imple-
ment a domain specific toolchain that converts high level
language software to hardware. We have implemented a
prototype toolchain that can transform Click routers writ-
ten in C++ to a hardware description in VHDL, which
can then be synthesised and run on a NetFPGA card as
part of the Stanford reference NIC design.

We use the “initialise-freeze-dump” method to trans-
form initialised C++ objects in memory to constants in
the output file of the front end. This way we can run the
initialisation code outside the hardware, and then use the
essential parts of code directly related to packet process-
ing to form the hardware parts. Using numerous LLVM
optimisations we can then transform the code in a form
that is suitable for AHIR to transform it further to VHDL.

The performance achieved by the hardware produced
by this toolchain is a significant fraction of that achieved
by a handwritten NetFPGA implementation. Although
work remains regarding the performance and flexibil-
ity of this specific toolchain, the results in general are
promising. The main performance bottlenecks are in the
translation between the Click and NetFPGA packet data
models. Changing the target, e.g. creating a packet pro-
cessing ASIC from the Click code, and using more chip
surface, would most likely bring far better performance.

7 Acknowledgments

The authors wish to thank Dr. Pekka Nikander and Dr.
Sameer D. Sahasrabuddhe for their invaluable efforts and
ideas in the early stages of this project.

This work has been partly funded by Tekes through its
Future Internet research program.

References

[1] AutoESL High-Level Synthesis Tool.http://www.xilinx.
com/tools/autoesl.htm.

[2] clang: a C language family frontend for LLVM.http://
clang.llvm.org/.

[3] DragonEgg.http://dragonegg.llvm.org/.

[4] Iperf. http://sourceforge.net/projects/iperf/.

[5] Tcpreplay.http://tcpreplay.synfin.net/.

[6] CANIS, A., CHOI, J., ALDHAM , M., ZHANG, V., KAM -
MOONA, A., ANDERSON, J. H., BROWN, S., AND CZA-
JKOWSKI, T. LegUp: High-Level Synthesis for FPGA-based
Processor/Accelerator Systems. InProceedings of the 19th
ACM/SIGDA international symposium on Field programmable
gate arrays (New York, NY, USA, 2011), FPGA ’11, ACM,
pp. 33–36.

[7] CHEN, B., AND MORRIS, R. Flexible Control of Parallelism in a
Multiprocessor PC Router. InUSENIX Annual Technical Confer-
ence, General Track (2001), Y. Park, Ed., USENIX, pp. 333–346.

[8] CHEN, D., CONG, J., FAN , Y., HAN , G., JIANG , W., AND

ZHANG, Z. xPilot: A Platform-Based Behavioral Synthesis Sys-
tem. InProc. of SRC TechCon’05 (2005).

[9] JÄ ÄSKELÄINEN , P., GUZMA , V., CILIO , A., AND TAKALA , J.
Codesign Toolset for Application-Specific Instruction-Set Pro-
cessors. InProc. of Multimedia on Mobile Devices 2007 (2007).

[10] K IM , C., CAESAR, M., AND REXFORD, J. Floodless in Seat-
tle: a scalable ethernet architecture for large enterprises. In SIG-
COMM (2008), V. Bahl, D. Wetherall, S. Savage, and I. Stoica,
Eds., ACM, pp. 3–14.

[11] KOHLER, E. The Click modular router. PhD thesis, MIT, 2000.

[12] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI , J., AND

KAASHOEK, M. F. The Click modular router.ACM Trans. Com-
put. Syst. 18, 3 (2000), 263–297.

[13] LATTNER, C., AND ADVE, V. S. The LLVM Compiler Frame-
work and Infrastructure Tutorial. InLCPC (2004), R. Eigenmann,
Z. Li, and S. P. Midkiff, Eds., vol. 3602 ofLecture Notes in Com-
puter Science, Springer, pp. 15–16.

[14] LOCKWOOD, J., MCKEOWN, N., WATSON, G., GIBB , G.,
HARTKE, P., NAOUS, J., RAGHURAMAN , R., AND LUO, J.
NetFPGA - An Open Platform for Gigabit-rate Network Switch-
ing and Routing. InIEEE International Conference on Micro-
electronics Education (June 2007).

[15] NIKANDER , P., NYMAN , B., RINTA -AHO, T., SAHASRABUD-
DHE, S. D., AND KEMPF, J. Towards Software-defined Sili-
con: Experiences in Compiling Click to NetFPGA. 1st European
NetFPGA Developers Workshop, Cambridge, UK, 2010.

[16] RINTA -AHO, T., GHANI , A., SAHASRABUDDHE, S. D., AND

NIKANDER , P. Towards Software-defined Silicon: Applying
LLVM to Simplifying Software. WISH - 3rd Workshop on Infras-
tructures for Software/Hardware co-design, Chamonix, France,
2011.

[17] SAHASRABUDDHE, S. D., SUBRAMANIAN , S., GHOSH, K. P.,
ARYA , K., AND DESAI, M. P. A c-to-rtl flow as an energy ef-
ficient alternative to embedded processors in digital systems. In
Proceedings of the 2010 13th Euromicro Conference on Digital
System Design: Architectures, Methods and Tools (Washington,
DC, USA, 2010), DSD ’10, IEEE Computer Society, pp. 147–
154.

[18] TRIPP, J. L., GOKHALE , M., AND PETERSON, K. D. Trident:
From High-Level Language to Hardware Circuitry.IEEE Com-
puter 40, 3 (2007), 28–37.

[19] ZHANG, J., ZHANG, Z., ZHOU, S., TAN , M., L IU , X., CHENG,
X., AND CONG, J. Bit-level optimization for high-level synthesis
and FPGA-based acceleration. InFPGA (2010), P. Y. K. Cheung
and J. Wawrzynek, Eds., ACM, pp. 59–68.

12


