
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— This work applies the design principles advocated

in recent publications in an attempt to compile the core of a new
Internet architecture. This allows conflict of interest to serve as a
driving force for innovation. The cornerstone of the architectural
framework is a well designed naming and addressing scheme.
Some of the most promising recent proposals in the area of
naming and addressing are combined creating a high-level
baseline architecture that may serve as a core of the new
Internet. An important feature of this architectural framework is
the functional layering with a proposed communication substrate
API. This API shields the application developer from the
complexity involved in handling multi-domain mobility in a QoS
controlled environment. It integrates multi-point (e.g. multicast)
communications for mobile and stationary endpoints.

It is a working hypothesis of the EU Ambient Networks
Project that this coherent framework can be combined with
replaceable functional components, at each communications
layer, providing a vehicle for handling specific functional
requirements and future innovation.

This tentative baseline architecture is proposed by members of
the Ambient Networks (AN) project for successive amendment to
meet all the AN requirements.

Index Terms—Addressing, Architecture, Mobility, Domain.

I. INTRODUCTION
mbient networking is geared towards increasing competition and
cooperation in an environment populated by a multitude of user

devices, wireless technologies, network operators and business
entities. This architecture aims to extend all IP networks with three
fundamental requirements of today�s networking world. These
requirements include dynamic network composition, mobility and
heterogeneity. By encompassing these notions the Ambient Networks
(AN) project [1] strives to achieve horizontally structured mobile
systems that offer common control functions to a wide range of
different applications and air interface technologies. Minimal

Manuscript received January 20, 2005. This document has been produced

in the context of the Ambient Networks Project. The Ambient Networks
Project is part of the European Community�s Sixth Framework Program for
research and is as such funded by the European Commission.

Inge Grønbæk is with Telenor R&D, Snarøyvn. 30, 1331 Fornebu,

Norway. (phone: +47 91881777; fax: +47 91881777; e-mail:
inge.gronbak@telenor.com).
 Teemu Rinta-aho is with Ericsson Research, 02420 Jorvas, Finland.
(phone: +358 9 299 3078; fax +358 9 299 3535; e-mail: teemu.rinta-
aho@nomadiclab.com).

Tony Jokikyyny is with with Ericsson Research, 02420 Jorvas, Finland.
(phone: +358 9 299 3315; fax +358 9 299 3535; e-mail:
tony.jokikyyny@nomadiclab.com).

assumptions are made about user devices in order to arrive at a
solution that can operate on terminals with differing capabilities. This
leads to a multi-domain environment where none of the existing
mobility solutions is sufficient. Additionally, the Internet has moved
from a research network to an arena dominated by commercial
stakeholders [2]. This has introduced strong and often conflicting
commercial interests. These conflicts have severely restricted the
technical development of the Internet and partly led to its
ossification. Examples include accommodation of well-established
requirements like QoS control, native mobility management and
multicast. We may experience a gradual migration of new
functionality into the next generation of Internet routers. This will
cater for efficiency and scalability. However, the evolving network
need some fundamental enhancements, e.g. in the area of naming and
addressing, together with APIs to access services and network
resources. Standardization of such APIs and the corresponding
interfaces between different network domains is the key to
innovation, allowing new services and technologies to be introduced
stepwise without severely impacting existing services and operating
domains. The new architecture has to support mobile applications
over a multiplicity of domains, including domains for: addressing,
administration, mobility, naming, routing, and security.

In the following we start by describing the major architectural
principles and requirements that should govern the development of
the new Internet architecture, including the layering principles and
APIs. Then we describe the proposed naming and addressing
framework as a key foundation for all the architectural components.
Lastly we briefly discuss some of the required components of the
multi-domain service oriented architecture including security,
mobility management, QoS control and multicast.

II. ARCHITECTURAL PRINCIPLES AND REQUIREMENTS
Innovation with new applications and services has driven the

growth of the Internet and the generation of new value. This implies
that barriers to new applications are much more destructive than
network-centric support for high use applications. Network-centric
functionality may even provide valuable building blocks for new
services and applications. The requirements that cannot easily be
catered for within the existing architecture suggest new design
principles that can accommodate the commercial tension while still
providing an innovative and competitive environment. The following
design principles proposed in [2] are adopted for this purpose:

• Design for variation in outcome, so that the outcome can
be different in different places, and the resolution of
conflict takes place within the design, not by distorting
or violating it.

• Do not design so as to dictate the outcome. Rigid
designs will be broken; designs that permit variation will
flex under pressure and survive.

• Modularize the design along boundaries of conflict, so

A Service Oriented Architecture for Multi-
domain Mobility

Inge Grønbæk, Teemu Rinta-aho, Tony Jokikyyny.

A

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

that one tussle does not spill over and distort unrelated
issues.

• Design for choice, to permit the different players to
express their preferences.

Choice is closely tied to open interfaces. Open interfaces play a
critical role in the evolution of networks, by allowing for competition
among algorithms, implementations, and vendors, and by enabling
rapid technical progress through replacement of modular parts rather
than entire systems. Conflict of interests is also focused at interfaces.
Exposure of cost of choice at such interfaces is among the important
design criteria.

The principles above have to be applied in combination with
functional requirements in order to derive a service-oriented
architecture with flexibility and room for competition. These
requirements ask for scalability in the required functionality as
indicated for the Layered IP service model in Fig. 1 and Fig. 2.

 Higher layers

Communication Substrate

AN Control Space (ACS)
Ambient Service
Interface API
Lower layer
API

Fig. 1 Network sub-layering.

A. Services, layering and APIs
A key architectural goal is to support a rich set of services and

building blocks (e.g. a toolbox) for application writers. This set needs
to be extensible and flexible to stimulate innovation. The service
layering model depicted in Fig. 1 facilitate the definition of a suitable
Ambient Network functional layering, and Fig. 2 shows grouping of
functions into the two layers in a hierarchy supporting applications.
The rationale for proposing such a two-layer model is purely
pragmatic, and at some stage the layers may merge.

The extent of interaction or integration with IP-layer routing
requires careful consideration, and the working hypothesis proposed
here is one sub-layer focusing on end-to-end aspects (ACS) and one
path oriented sub-layer (the communication substrate) (Fig. 1).

Fig. 2 expands on the sub-layering shown in Fig. 1, suggesting
architecture for service layering allowing applications and
call/session control to control the IP-bearer and its service levels via
a standardized Ambient Service Interface API.

Layer offering e.g.:
QoS control, Multicast support,
Diversity, Traffic engineering, and
Charging.

IP bearer layer offering generic building
blocks, e.g:

VPN, Mobility Management,
QoS control, Multicast support,
Traffic engineering, and Charging. Lower

layer
API

Ambient
Service

Interface
API

Call/session control

Entity with application(s)

Fig. 2 Layered IP service model.

Some of the functionality may only be provided by one of the sub-

layers as a service to the upper layer, while some functions may
involve both sub-layers as the upper layer may enhance the
functionality provided by the lower layer. Functionality may be
passed transparently to the layer(s) above.
The lower sub-layer may, depending on the technologies involved,
include the following service functionality that is offered to and used
by the IP bearer layer:

• Connection establishment and release, with control of:
o Reliability/Robustness
o Bandwidth capacity and capacity modification

(when available)
o Charging information

An example technology for application at the lower layer is
MPLS.

The model separates the higher layer service oriented functionality
from the basic forwarding at the communication substrate.

B. Entities and Sessions
Host-to-host communication is replaced conceptually by
communication between pairs of entities via logical associations
called sessions. Packet exchange is handled via the communication
substrate taking care of Mobility Management and QoS control. An
entity, as defined in [3], [4] and visualized in Fig. 3, is the
generalization of an application that is an endpoint of
communication. An entity contains states for both application and
communication, and it is the smallest unit that can be mobile. A
moving entity is a unit, carrying its application state and
communication state including the endpoints of its sessions. Entities
operate in interaction with lower-level supporting systems, including
operating systems and the Ambient Network Resource Interface.
Transport protocols exchange data between two entities (Fig. 3), and
the topological location of the entity is irrelevant to the basic
semantics of transport.

The communication substrate delivers data on behalf of entities
and their sessions. When an entity wants to send a packet for one of
its sessions, it uses the DATA primitive of the API (see Formula 2) to
hand the packet to the Ambient Service Interface with parameters
defining the destination (locator) and the path. The destination
locator contains the information needed to cause delivery of the
packet to the desired destination entity. The destination entity is
dynamically attached to a slot at its current point of attachment. The
destination locator references this slot. A particular management
mechanism may rewrite the locator en route (e.g. when transiting
different addressing or mobility domains). The delivery is all the way
via the communication substrate to the slot where the entity is
attached, and then to the identified session endpoint.

Mobility management for active sessions is handled below the
Ambient Service Interface involving a function called locator
management. The locator management effectively hides the mobility
management from communicating entities.

III. FUNCTIONAL COMPONENTS OF THE ARCHITECTURE

A. Naming and addressing for multi-domain mobility
The current Internet has only two global naming domains, DNS

names and IP addresses [5]. These domains are tied to administrative
domains and network topology, respectively. The rigidity and
limitation of these name domains are responsible for a variety of
architectural shortcomings. The Internet therefore lacks a mechanism
for directly and persistently naming data and services by relating
naming to the hosts on which they reside. This makes it inconvenient
to move or replicate service instances and data (entities). It is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

therefore proposed in the Layered Naming Architecture [6], [7] to
introduce a new flat global name domain for services (SID domain).
A Service ID (SID) is an identifier assigned to a given service for its
unique identification.

Multiple naming domains for services still have to be supported.
This applies at least until migration from the existing name spaces to
a new flat name space is undertaken. The payoff of such name-spaces
may be significant, and recent development in Distributed Hash
Tables (DHTs) [8] has made their use practical also in the global
scope. Once a flat naming domain is established, it can be used to
name any type of entity or data. Additionally the extra naming layer
will shield applications from the underlying routers, avoiding
dependence on the legacy Internet infrastructure. This separation of
location from service identity (SID) allows the network to use any
addressing scheme and multiple addressing domains independently
of the naming scheme.

This decoupling of identity from location and addressing gives the
freedom of choice and adaptability for the delivery path for packets.
An entity may move within the same system or to a different system.
It may also move because the entire system moves, either
geologically or topologically (e.g., renumbering, provider-based
addressing, etc.). Such movement only requires the system to update
the required SID to location bindings e.g. at the involved Mobility
Anchor points.

Locator.Net refers to the Substrate Endpoint at the point of
attachment. (Locator.Net = EID at the access router.)

Locator1.Slot = Locator2.Slot

Entity

Session
Id1

Session
Id2

Session
Id3

Session
Idn

Locator1 Locator2
(multiple locators per Slot allowed)

Operating System
Communication Substrate

Session Id demux.

Association
State

forwarding
API

Slot (Port)

Session
Endpoints

Fig. 3 Entity, slot and the communication substrate.

The following hierarchical naming framework will support the
desired separation of identity from location:

• User-level descriptors (keywords, URLs, etc.).
• Host independent Service Identifier (SID � may be

interpreted as an entity name).
• Locator

Locator.Slot refers to the slot (e.g. port) within the end-
system where an entity may be attached.
Locator.Net refers to the communication substrate
endpoint at this end-system (e.g. the IP address).

• IP address (Point of attachment).
• Path identifier (Formula 1) will be required to identify

physical paths within the network between
communication substrate endpoints (e.g. point of
attachments).

Additionally there is a need for separate identifiers for hosts and

network nodes. These may be used in describing network topologies
and network related functionality like routing, resilience, traffic
engineering etc. The topology independent Endpoint Identifier EID
[7] is introduced for this purpose:

• EID.Host identifies the host or network element
globally. (It is important to note that a host can also be
an entity, but in that case it will depend on the context
which identifier will be applied e.g. for mobility
management.), and

• EID.Interface identifies a specific interface locally
scoped at a host or a network element, e.g. at a point of
attachment.

It should be noted that EIDs may be used both internal to the
network (i.e. for network element identification) as well as for
(mobile) host identification. This means that a communication
substrate endpoint involves two EIDs: one on the network side (e.g.
at the access router) and one at the (mobile) host.

Flat name spaces, without external semantic bindings, are
proposed in [7] for the SID and the EID. This may require additional
association of meta-data of some form (e.g. human understandable
text, or subject classifications). This will be analyzed more in detail
in the context of the Ambient Network Project. The locator
mechanism allows communication with an entity (or service) also
without knowing its SID.

Name resolution can be verified applying cryptographic
techniques. The resolution levels supporting the above naming
framework are as follows:

1. User-level descriptor → Service Identifier (SID)
2. Service Identifier (SID) → Locator*.

Locators reference slots where a serving entity is
supposed to be attached. This resolution may e.g. be
made source dependent as proposed in [4].
A SID → EID�* resolution, providing the hosts and slots
for the service, with a following EID� → Locator
resolution is less desirable since a service may relocate
independent of host mobility.

3. Locator.Net → IP address/EID (point of attachment)
A network side EID could replace the IP address, and
the addressing and routing could be directly based on
this EID. (e.g. Locator.Net = EID)

*) This is intentionally a one to many mapping. (There is a
one to many mapping between a SID and locator since a
service may be replicated at different locations. A locator
references a selected entity providing the service.)

EIDs are not always needed since old parts of the network would
need to rely only on IP addresses for a considerable amount of time.

Additionally the following mapping at the substrate level is
defined to identify all paths leading to an entity referenced by a
locator:

• Locator → Path Id*
Additionally there is a one to one mapping between the path id

and the flow id, and a many to one mapping between flow id and
session id (see the sessions and mobility paragraph for a description
of paths and flows).

B. Ambient Service Interface
The Ambient Service Interface API will have to offer a set of

service primitives. One important primitive specify the
characteristics of the requested bearer in terms of QoS, security,
resilience, cost etc. This information would be supplied as parameters
to the primitive as shown in Formula 1.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

 PATH (Locator, Path, Policy, QoS,
 Resilience, Security, Charge, etc.)

Formula 1 PATH primitive with QoS and bearer parameters.

The locator in the PATH primitive is an opaque object that

specifies the point of attachment and a slot in the correspondent node
to which communications is desired (Fig. 3). The path parameter of
the primitive is also an opaque object as seen from the service user.
This parameter does not require being valued at the invocation of the
PATH primitive, but the RESV-COMMIT primitive, giving a
response to the PATH (Fig. 4), will return path identification. The
PATH primitive can be invoked more than once for the same locator
to create alternative paths. To sum up, the locator defines where to
go, while the path identifies how to get there.

 B-side A-side

RESV-COMMIT

ACK

PATH

QoS bearer control

Fig. 4 QoS-controlled bearer service.

The QoS parameter carried in the PATH primitive of the bearer

establishment (Fig. 4) defines the initial QoS level. It also defines the
limits for QoS modifications that can be allowed without QoS re-
negotiation. Re-negotiation is carried out by the applications e.g. by
re-invoking the bearer service primitives. The network will initiate
such re-negotiation when failing to maintain a level of QoS within
the established boundaries.

Short transactions may not benefit from explicit bearer control. It
should therefore be possible for an application to request a default
QoS level that shall be applied e.g. until an explicit request is
submitted overriding the default setting.

When an entity wants to send a service data unit for one of its
sessions, it hands that payload to its communication substrate, via the
DATA primitive (Formula 2). The destination locator contains the
information needed to cause eventual delivery of the packet to the
desired destination entity. Every locator will have a network
(Locator.Net) part and a local-delivery (Locator.Slot) part (see Fig.
3). The network part controls delivery of the packet, via the
communication substrate endpoint (i.e. via. EID.Interface), to a
protocol stack in the node containing the entity, and the local-
delivery part is used to complete delivery to the designated slot
where the entity is attached. This is analogous to an {IP address, port
number} pair in the current architecture.

 DATA (Locator, Path, Payload)

Formula 2 DATA primitive

The Data service allows communication with a remote entity, via

the locator, without necessarily having to know its name, SID or
EID. Furthermore, the mechanism used to learn the content of the
locator may be global, or it may be local. This asserts the possibility
of both local and global addressing domains.

Entities should treat locators as opaque objects. The locator

management functions and the related mobility management is local
to the Ambient Service layer, and is accessed via an API that entities
use for creating, analyzing, saving, and updating the locators. When
a mobile entity moves to a different slot, the locators for existing
sessions and flows must be updated to deliver to the new slot.

The slot in Fig. 3 is possibly supported by multi-homing, with
network attachment points reached via Locator1 and Locator2. This
represents an important resilience and load balancing mechanism that
can be used on two levels. Firstly two different locators (e.g. with a
common slot) may be applied to force the mobility management to
route the flows via different points of attachment at the
communication substrate. Additionally the communication substrate
may offer disjoint paths for each of the locators. This QoS
functionality may be offered via the bearer API for selected paths,
and relying on the substrate level routing.

A topology independent communication substrate endpoint, called
EID here (i.e. a node name and an interface) is identifying itself to
the network, to the �authorities�, and so on. Such identities are
required to allow resilience and load balancing through selection of
disjoint routes etc.

In the case when no IP addresses are applied (e.g. in a new
architecture after its adoption) there is a need to base the addressing
on the EID. This is the major reason for the need of a logical
construct of the form EID.Interface additional to the EID.Host. (Such
an EID naming structure is also combinable with flat naming).

An Endpoint Identifier (EID) can thus substitute the IP address for
routing (to a point of attachment). This may in the long term obviate
the need for the Locator.Net → IP address resolution.

Distributed Hash Tables (DHTs) are assumed to be well suited for
support of EID based routing, but this needs further verification.

Basing routing on EIDs and DHTs can in principle be done in two
very different ways:

1. The first alternative is to use e.g. a DHT to look up an
address for the EID.

2. Another alternative is to completely avoid the additional
address by using e.g. a DHT for direct routing of each
and every packet.

The second alternative is interesting since e.g. multicast and
Mobility Management represent a natural extension of DHT based
routing. This remains as future work.

Middle-boxes (such as NATs, firewalls and transparent caches)
are used as last resorts due to functional limitations in the Internet
architecture. This results in violating IP semantics and making the
Internet application-specific. Redirection is therefore proposed in [7]
to allow a network entity to direct resolutions of its name not only to
its own location, but also to the locations or names of chosen
delegates or proxies. This mechanism is called receiver-controlled
intermediaries and is discussed in detail in [7].

The destination abstraction introduced in the Layered Naming
Architecture [7] was generalized to represent a sequence of
destinations (i.e. a sequence of EIDs, locators or SIDs). The
intermediary points, reached via the communication substrate, do not
only forward the packet but may act on them in non-trivial ways (e.g.
by carrying out rerouting, address translation, encapsulation etc.).
These intermediaries represent source-controlled (as opposed to
receiver-controlled) intermediaries. The mechanism of stacked
identifiers can be applied for implementation of the mechanism. An
API for intermediary control with associated substrate level
signalling for path control may be defined. This delegation or
redirection at the Ambient Network Resource layer can find more
uses, e.g. for load balancing.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

C. Sessions and mobility
Entities communicate with each other using logical

communication links named sessions. A session implies persistent
communication state within the linked entities. (A session may be
considered to be roughly analogous to a transport-layer connection in
the current architecture.) Each packet belongs to exactly one session,
and an entity may have multiple concurrent sessions that each could
involve multiple flows. Sessions are purely end-to-end, they are
known only to their entities and are invisible to the routers. However,
there is a one to one mapping between the flows constituting a
session and the paths carried at the communication substrate. Paths
are under QoS and Mobility Management below the Ambient Service
Interface.

Each packet carries a session id that enables the receiving entity to
de-multiplex the message, within the slot, to its session (see Fig. 3).
The name domain of session ids is local to an entity, and thus
unchanged by movement of the entity.

Session establishment between entities A and B will generally
involve some kind of handshake that begins when A sends an initial
message to B. Entity A must obtain a locator to reach B. Subsequent
packets from A to B will also carry a session id valid for the B-side
of the session, but the initial packet cannot, since session id�s are
local to entities. Thus, there is a need for initialization that may be
supported by a Directory System (DS) and some kind of a
Rendezvous mechanism [9]. An in depth description of session
establishment may be found in [4].

A session is composed by one or more flows. Each of these flows
has allocated a distinctly identified path within the communication
substrate, and each flow may thus be allocated different
characteristics (e.g. QoS, resilience, etc.) via the PATH primitive.
The level of granularity for the Ambient Networks Mobility
Management (MM) is the path (flow).

Session mobility implies MM for all paths/flows within a session.
The basic functionality required for session mobility is available for a
normal handover initiated on layers below the application. However,
session mobility has to be initiated by the session user (e.g. by the
application), and may cross device boundaries. The initializing entity
must therefore specify the locator identifying the slot of the new
entity to which the session should be moved. The initiating entity
must additionally transfer its association state to the new entity by
initiating an application level context transfer. This context transfer
establishes the session endpoint within the new entity and identifies
the triggering event for the session handover to be carried out within
the Ambient Network Control Space. This assumes that the initiating
entity requests the Ambient Network Control Space to complete the
handover. The path establishment(s) to the new entity is implicit in a
normal handover. However, the triggering event could carry an
identification of selected flows (e.g. a subset of active flows in a
multi-flow session) to allow sub-session mobility.

Session handover controlled by a third party is also possible. Such
a capability could be an interesting building block of advanced new
services.

D. End-to-End Security
At the network level, decoupling location and identity means that

using IP routing to send a packet to a given location (via IP) no
longer means that the packet is going to the host with the intended
identity (EID). On the other hand, because EIDs are flat, they can
hold cryptographic meaning. The identifiers could be derived e.g. by
hashing a public key. As a result, two communicating parties, given
each other�s identifiers, can authenticate each other in a way that
they could not if hosts were identified only by IP address. The Host

Identity Protocol (HIP) [10] is exactly designed to address such
security issues and many of its mechanisms can be inherited by the
new architecture. A more in depth discussion of security is outside
the scope of this paper, and interested readers are referred to [4], or
to current work in the context of the Ambient Networks Project [11].

IV. CONCLUSIONS AND FURTHER WORK
We have developed a business oriented architectural framework as

a basis for further elaborations, e.g. within the Ambient Network
Project. The characteristic of this framework is that it should allow
diverse players in the cyber-business to revitalize the innovation that
has made Internet such a tremendous success. This architecture fully
supports mobility up to the session level and can serve as a vehicle
for converging mobile and wire-line communications by treating
mobility as the ordinary case allowing potentially all end-systems to
move either alone or in groups. Mechanisms for QoS and resilience
control are also inherent in the architecture, and the proposed
layering with API support ensures freedom of choice and flexibility
in innovation both in dimensions of technology and functionality.

The following aspects of the architecture are for urgent further
study within the Ambient Network project: Use of flat names,
without external semantic bindings, for the SID and the EID; DHT
applicability for e.g. name resolution and routing; Details of locator
based handover management, and last, but probably most important,
the security aspects.

ACKNOWLEDGMENT
The authors would like to thank all members of the Ambient

Networks work package on mobility and moving networks, and
Jukka Ylitalo for providing valuable comments.

REFERENCES
[1] http://www.ambient-networks.org/.
[2] �Tussle in Cyberspace: Defining Tomorrow�s Internet�, David D. Clark,

John Wroclawski, Karen R. Sollins, Robert Braden, SIGCOMM�02,
August 19-23, 2002, Pittsburgh, Pennsylvania, USA,
http://www.acm.org/sigs/sigcomm/sigcomm2002/papers/tussle.pdf.

[3] �NewArch project�, http://www.isi.edu/newarch/.
[4] �FARA: Reorganizing the Addressing Architecture�, D. Clark, R.

Braden, A. Falk, V. Pingali, ACM SIGCOMM 2003 Workshops August
25&27, 2003,
http://www.isi.edu/newarch/DOCUMENTS/FARA.FDNA03.pdf.

[5] �Naming, Addressing and Identity Architecture�, draft IST-2002-
507134-AN/ WP1/R04, 2004-12-17.

[6] �IRIS Project�, http://project-iris.net/.
[7] �A Layered Naming Architecture for the Internet�, Hari Balakrishnan,

Karthik Lakshminarayanan, Sylvia Ratnasamy, Scott Shenker, Ion
Stoica, Michael Walfish. In the Proceedings of the ACM SIGCOMM
Conf., Portland, OR, September 2004, http://project-
iris.net/irisbib/papers/naming:sigcomm04/paper.pdf.

[8] �Chord: a scalable peer-to-peer lookup protocol for internet
applications�, Ion Stoica, Robert Morris, David Liben-Nowell, David R.
Karger, M. Frans Kaashoek, Frank Dabek, Hari Balakrishnan,
IEEE/ACM Transactions on Networking (TON), Volume 11, Issue 1
(February 2003), pp. 17-32, ISSN: 1063-6692.

[9] �Internet Indirection Infrastructure�, I. Stoica, D. Adkins, S. Zhuang, S.
Shenker, and S. Surana, Proc. ACM SIGCOMM 2002, pp 73-86, August
2002, http://i3.cs.berkeley.edu/publications/papers/i3-sigcomm.pdf.

[10] �Host Identity Protocol Architecture�, Moskowitz, R. and P. Nikander,
IETF work in progress, October 16 2004, http://www.ietf.org/internet-
drafts/draft-ietf-hip-arch-00.txt.

[11] �Ambient Networks Intermediate Security Architecture�, IST-2002-
507134-AN/ WP7/D01, 205-01-10.

http://www.ambient-networks.org/
http://www.acm.org/sigs/sigcomm/sigcomm2002/papers/tussle.pdf
http://www.isi.edu/newarch/
http://www.isi.edu/newarch/DOCUMENTS/FARA.FDNA03.pdf
http://project-iris.net/
http://project-iris.net/irisbib/papers/naming:sigcomm04/paper.pdf
http://project-iris.net/irisbib/papers/naming:sigcomm04/paper.pdf
http://i3.cs.berkeley.edu/publications/papers/i3-sigcomm.pdf
http://www.ietf.org/internet-drafts/draft-ietf-hip-arch-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-arch-00.txt

	INTRODUCTION
	Architectural principles and requirements
	Services, layering and APIs
	Entities and Sessions

	Functional components of the architecture
	Naming and addressing for multi-domain mobility
	Ambient Service Interface
	Sessions and mobility
	End-to-End Security

	Conclusions and further work

