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Abstract— This work applies the design principles advocated 

in recent publications in an attempt to compile the core of a new 
Internet architecture. This allows conflict of interest to serve as a 
driving force for innovation. The cornerstone of the architectural 
framework is a well designed naming and addressing scheme. 
Some of the most promising recent proposals in the area of 
naming and addressing are combined creating a high-level 
baseline architecture that may serve as a core of the new 
Internet. An important feature of this architectural framework is 
the functional layering with a proposed communication substrate 
API. This API shields the application developer from the 
complexity involved in handling multi-domain mobility in a QoS 
controlled environment. It integrates multi-point (e.g. multicast) 
communications for mobile and stationary endpoints. 

It is a working hypothesis of the EU Ambient Networks 
Project that this coherent framework can be combined with 
replaceable functional components, at each communications 
layer, providing a vehicle for handling specific functional 
requirements and future innovation. 

This tentative baseline architecture is proposed by members of 
the Ambient Networks (AN) project for successive amendment to 
meet all the AN requirements. 

 
Index Terms—Addressing, Architecture, Mobility, Domain. 

 

I. INTRODUCTION 
mbient networking is geared towards increasing competition and 
cooperation in an environment populated by a multitude of user 

devices, wireless technologies, network operators and business 
entities. This architecture aims to extend all IP networks with three 
fundamental requirements of today�s networking world. These 
requirements include dynamic network composition, mobility and 
heterogeneity. By encompassing these notions the Ambient Networks 
(AN) project [1] strives to achieve horizontally structured mobile 
systems that offer common control functions to a wide range of 
different applications and air interface technologies. Minimal 
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assumptions are made about user devices in order to arrive at a 
solution that can operate on terminals with differing capabilities. This 
leads to a multi-domain environment where none of the existing 
mobility solutions is sufficient. Additionally, the Internet has moved 
from a research network to an arena dominated by commercial 
stakeholders [2]. This has introduced strong and often conflicting 
commercial interests. These conflicts have severely restricted the 
technical development of the Internet and partly led to its 
ossification. Examples include accommodation of well-established 
requirements like QoS control, native mobility management and 
multicast. We may experience a gradual migration of new 
functionality into the next generation of Internet routers. This will 
cater for efficiency and scalability. However, the evolving network 
need some fundamental enhancements, e.g. in the area of naming and 
addressing, together with APIs to access services and network 
resources. Standardization of such APIs and the corresponding 
interfaces between different network domains is the key to 
innovation, allowing new services and technologies to be introduced 
stepwise without severely impacting existing services and operating 
domains. The new architecture has to support mobile applications 
over a multiplicity of domains, including domains for: addressing, 
administration, mobility, naming, routing, and security. 

In the following we start by describing the major architectural 
principles and requirements that should govern the development of 
the new Internet architecture, including the layering principles and 
APIs. Then we describe the proposed naming and addressing 
framework as a key foundation for all the architectural components. 
Lastly we briefly discuss some of the required components of the 
multi-domain service oriented architecture including security, 
mobility management, QoS control and multicast. 

II. ARCHITECTURAL PRINCIPLES AND REQUIREMENTS 
Innovation with new applications and services has driven the 

growth of the Internet and the generation of new value. This implies 
that barriers to new applications are much more destructive than 
network-centric support for high use applications. Network-centric 
functionality may even provide valuable building blocks for new 
services and applications. The requirements that cannot easily be 
catered for within the existing architecture suggest new design 
principles that can accommodate the commercial tension while still 
providing an innovative and competitive environment. The following 
design principles proposed in [2] are adopted for this purpose: 

• Design for variation in outcome, so that the outcome can 
be different in different places, and the resolution of 
conflict takes place within the design, not by distorting 
or violating it.  

• Do not design so as to dictate the outcome. Rigid 
designs will be broken; designs that permit variation will 
flex under pressure and survive.  

• Modularize the design along boundaries of conflict, so 
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that one tussle does not spill over and distort unrelated 
issues.  

• Design for choice, to permit the different players to 
express their preferences. 

Choice is closely tied to open interfaces. Open interfaces play a 
critical role in the evolution of networks, by allowing for competition 
among algorithms, implementations, and vendors, and by enabling 
rapid technical progress through replacement of modular parts rather 
than entire systems. Conflict of interests is also focused at interfaces. 
Exposure of cost of choice at such interfaces is among the important 
design criteria.  

The principles above have to be applied in combination with 
functional requirements in order to derive a service-oriented 
architecture with flexibility and room for competition. These 
requirements ask for scalability in the required functionality as 
indicated for the Layered IP service model in Fig. 1 and Fig. 2. 

 
 Higher layers 

Communication Substrate 

AN Control Space (ACS) 
Ambient Service 
Interface API 
Lower layer 
API 

 
 
Fig. 1  Network sub-layering. 

A. Services, layering and APIs 
A key architectural goal is to support a rich set of services and 

building blocks (e.g. a toolbox) for application writers. This set needs 
to be extensible and flexible to stimulate innovation. The service 
layering model depicted in Fig. 1 facilitate the definition of a suitable 
Ambient Network functional layering, and Fig. 2 shows grouping of 
functions into the two layers in a hierarchy supporting applications. 
The rationale for proposing such a two-layer model is purely 
pragmatic, and at some stage the layers may merge.  

The extent of interaction or integration with IP-layer routing 
requires careful consideration, and the working hypothesis proposed 
here is one sub-layer focusing on end-to-end aspects (ACS) and one 
path oriented sub-layer (the communication substrate) (Fig. 1). 

Fig. 2 expands on the sub-layering shown in Fig. 1, suggesting 
architecture for service layering allowing applications and 
call/session control to control the IP-bearer and its service levels via 
a standardized Ambient Service Interface API.  

 
 

Layer offering e.g.: 
QoS control, Multicast support, 
Diversity, Traffic engineering, and 
Charging. 

IP bearer layer offering generic building 
blocks, e.g: 

VPN, Mobility Management,  
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API 

Ambient 
Service 
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API  
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Fig. 2  Layered IP service model. 
 
 

Some of the functionality may only be provided by one of the sub-

layers as a service to the upper layer, while some functions may 
involve both sub-layers as the upper layer may enhance the 
functionality provided by the lower layer. Functionality may be 
passed transparently to the layer(s) above. 
The lower sub-layer may, depending on the technologies involved, 
include the following service functionality that is offered to and used 
by the IP bearer layer: 

• Connection establishment and release, with control of: 
o Reliability/Robustness  
o Bandwidth capacity and capacity modification 

(when available) 
o Charging information 

An example technology for application at the lower layer is 
MPLS. 

The model separates the higher layer service oriented functionality 
from the basic forwarding at the communication substrate. 

B. Entities and Sessions 
Host-to-host communication is replaced conceptually by 
communication between pairs of entities via logical associations 
called sessions. Packet exchange is handled via the communication 
substrate taking care of Mobility Management and QoS control. An 
entity, as defined in [3], [4] and visualized in Fig. 3, is the 
generalization of an application that is an endpoint of 
communication. An entity contains states for both application and 
communication, and it is the smallest unit that can be mobile. A 
moving entity is a unit, carrying its application state and 
communication state including the endpoints of its sessions. Entities 
operate in interaction with lower-level supporting systems, including 
operating systems and the Ambient Network Resource Interface. 
Transport protocols exchange data between two entities (Fig. 3), and 
the topological location of the entity is irrelevant to the basic 
semantics of transport. 

The communication substrate delivers data on behalf of entities 
and their sessions. When an entity wants to send a packet for one of 
its sessions, it uses the DATA primitive of the API (see Formula 2) to 
hand the packet to the Ambient Service Interface with parameters 
defining the destination (locator) and the path. The destination 
locator contains the information needed to cause delivery of the 
packet to the desired destination entity. The destination entity is 
dynamically attached to a slot at its current point of attachment. The 
destination locator references this slot. A particular management 
mechanism may rewrite the locator en route (e.g. when transiting 
different addressing or mobility domains). The delivery is all the way 
via the communication substrate to the slot where the entity is 
attached, and then to the identified session endpoint.  

Mobility management for active sessions is handled below the 
Ambient Service Interface involving a function called locator 
management. The locator management effectively hides the mobility 
management from communicating entities.  

III. FUNCTIONAL COMPONENTS OF THE ARCHITECTURE 

A. Naming and addressing for multi-domain mobility 
The current Internet has only two global naming domains, DNS 

names and IP addresses [5]. These domains are tied to administrative 
domains and network topology, respectively. The rigidity and 
limitation of these name domains are responsible for a variety of 
architectural shortcomings. The Internet therefore lacks a mechanism 
for directly and persistently naming data and services by relating 
naming to the hosts on which they reside. This makes it inconvenient 
to move or replicate service instances and data (entities). It is 
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therefore proposed in the Layered Naming Architecture [6], [7] to 
introduce a new flat global name domain for services (SID domain). 
A Service ID (SID) is an identifier assigned to a given service for its 
unique identification. 

Multiple naming domains for services still have to be supported. 
This applies at least until migration from the existing name spaces to 
a new flat name space is undertaken. The payoff of such name-spaces 
may be significant, and recent development in Distributed Hash 
Tables (DHTs) [8] has made their use practical also in the global 
scope. Once a flat naming domain is established, it can be used to 
name any type of entity or data. Additionally the extra naming layer 
will shield applications from the underlying routers, avoiding 
dependence on the legacy Internet infrastructure. This separation of 
location from service identity (SID) allows the network to use any 
addressing scheme and multiple addressing domains independently 
of the naming scheme.  

This decoupling of identity from location and addressing gives the 
freedom of choice and adaptability for the delivery path for packets. 
An entity may move within the same system or to a different system. 
It may also move because the entire system moves, either 
geologically or topologically (e.g., renumbering, provider-based 
addressing, etc.). Such movement only requires the system to update 
the required SID to location bindings e.g. at the involved Mobility 
Anchor points. 

 
 

Locator.Net refers to the Substrate Endpoint at the point of 
attachment. (Locator.Net = EID at the access router.) 

Locator1.Slot = Locator2.Slot 
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Fig. 3  Entity, slot and the communication substrate. 
 

The following hierarchical naming framework will support the 
desired separation of identity from location: 

• User-level descriptors (keywords, URLs, etc.). 
• Host independent Service Identifier (SID � may be 

interpreted as an entity name). 
• Locator 

Locator.Slot refers to the slot (e.g. port) within the end-
system where an entity may be attached. 
Locator.Net refers to the communication substrate 
endpoint at this end-system (e.g. the IP address). 

• IP address (Point of attachment). 
• Path identifier (Formula 1) will be required to identify 

physical paths within the network between 
communication substrate endpoints (e.g. point of 
attachments). 

Additionally there is a need for separate identifiers for hosts and 

network nodes. These may be used in describing network topologies 
and network related functionality like routing, resilience, traffic 
engineering etc. The topology independent Endpoint Identifier EID 
[7] is introduced for this purpose: 

• EID.Host identifies the host or network element 
globally. (It is important to note that a host can also be 
an entity, but in that case it will depend on the context 
which identifier will be applied e.g. for mobility 
management.), and  

• EID.Interface identifies a specific interface locally 
scoped at a host or a network element, e.g. at a point of 
attachment. 

It should be noted that EIDs may be used both internal to the 
network (i.e. for network element identification) as well as for 
(mobile) host identification. This means that a communication 
substrate endpoint involves two EIDs: one on the network side (e.g. 
at the access router) and one at the (mobile) host. 

Flat name spaces, without external semantic bindings, are 
proposed in [7] for the SID and the EID. This may require additional 
association of meta-data of some form (e.g. human understandable 
text, or subject classifications). This will be analyzed more in detail 
in the context of the Ambient Network Project. The locator 
mechanism allows communication with an entity (or service) also 
without knowing its SID. 

Name resolution can be verified applying cryptographic 
techniques. The resolution levels supporting the above naming 
framework are as follows: 

1. User-level descriptor → Service Identifier (SID) 
2. Service Identifier (SID) → Locator*. 

Locators reference slots where a serving entity is 
supposed to be attached. This resolution may e.g. be 
made source dependent as proposed in [4].  
A SID → EID�* resolution, providing the hosts and slots 
for the service, with a following EID� → Locator 
resolution is less desirable since a service may relocate 
independent of host mobility. 

3. Locator.Net → IP address/EID (point of attachment)  
A network side EID could replace the IP address, and 
the addressing and routing could be directly based on 
this EID. (e.g. Locator.Net = EID) 

*) This is intentionally a one to many mapping. (There is a 
one to many mapping between a SID and locator since a 
service may be replicated at different locations. A locator 
references a selected entity providing the service.) 

EIDs are not always needed since old parts of the network would 
need to rely only on IP addresses for a considerable amount of time. 

Additionally the following mapping at the substrate level is 
defined to identify all paths leading to an entity referenced by a 
locator: 

• Locator → Path Id* 
Additionally there is a one to one mapping between the path id 

and the flow id, and a many to one mapping between flow id and 
session id (see the sessions and mobility paragraph for a description 
of paths and flows). 

B. Ambient Service Interface 
The Ambient Service Interface API will have to offer a set of 

service primitives. One important primitive specify the 
characteristics of the requested bearer in terms of QoS, security, 
resilience, cost etc. This information would be supplied as parameters 
to the primitive as shown in Formula 1. 
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 PATH (Locator, Path, Policy, QoS,  
                       Resilience, Security, Charge, etc.)

 
Formula 1  PATH primitive with QoS and bearer parameters. 

 
The locator in the PATH primitive is an opaque object that 

specifies the point of attachment and a slot in the correspondent node 
to which communications is desired (Fig. 3). The path parameter of 
the primitive is also an opaque object as seen from the service user. 
This parameter does not require being valued at the invocation of the 
PATH primitive, but the RESV-COMMIT primitive, giving a 
response to the PATH (Fig. 4), will return path identification. The 
PATH primitive can be invoked more than once for the same locator 
to create alternative paths. To sum up, the locator defines where to 
go, while the path identifies how to get there.  

 
 B-side A-side 

RESV-COMMIT 

ACK 

PATH 

QoS bearer control 

 
Fig. 4  QoS-controlled bearer service. 

 
The QoS parameter carried in the PATH primitive of the bearer 

establishment (Fig. 4) defines the initial QoS level. It also defines the 
limits for QoS modifications that can be allowed without QoS re-
negotiation. Re-negotiation is carried out by the applications e.g. by 
re-invoking the bearer service primitives. The network will initiate 
such re-negotiation when failing to maintain a level of QoS within 
the established boundaries. 

Short transactions may not benefit from explicit bearer control. It 
should therefore be possible for an application to request a default 
QoS level that shall be applied e.g. until an explicit request is 
submitted overriding the default setting.  

When an entity wants to send a service data unit for one of its 
sessions, it hands that payload to its communication substrate, via the 
DATA primitive (Formula 2). The destination locator contains the 
information needed to cause eventual delivery of the packet to the 
desired destination entity. Every locator will have a network 
(Locator.Net) part and a local-delivery (Locator.Slot) part (see Fig. 
3). The network part controls delivery of the packet, via the 
communication substrate endpoint (i.e. via. EID.Interface), to a 
protocol stack in the node containing the entity, and the local-
delivery part is used to complete delivery to the designated slot 
where the entity is attached. This is analogous to an {IP address, port 
number} pair in the current architecture. 

 
 DATA (Locator, Path, Payload)

 
Formula 2  DATA primitive 

 
The Data service allows communication with a remote entity, via 

the locator, without necessarily having to know its name, SID or 
EID. Furthermore, the mechanism used to learn the content of the 
locator may be global, or it may be local. This asserts the possibility 
of both local and global addressing domains. 

Entities should treat locators as opaque objects. The locator 

management functions and the related mobility management is local 
to the Ambient Service layer, and is accessed via an API that entities 
use for creating, analyzing, saving, and updating the locators. When 
a mobile entity moves to a different slot, the locators for existing 
sessions and flows must be updated to deliver to the new slot. 

The slot in Fig. 3 is possibly supported by multi-homing, with 
network attachment points reached via Locator1 and Locator2. This 
represents an important resilience and load balancing mechanism that 
can be used on two levels. Firstly two different locators (e.g. with a 
common slot) may be applied to force the mobility management to 
route the flows via different points of attachment at the 
communication substrate. Additionally the communication substrate 
may offer disjoint paths for each of the locators. This QoS 
functionality may be offered via the bearer API for selected paths, 
and relying on the substrate level routing. 

A topology independent communication substrate endpoint, called 
EID here (i.e. a node name and an interface) is identifying itself to 
the network, to the �authorities�, and so on. Such identities are 
required to allow resilience and load balancing through selection of 
disjoint routes etc.  

In the case when no IP addresses are applied (e.g. in a new 
architecture after its adoption) there is a need to base the addressing 
on the EID. This is the major reason for the need of a logical 
construct of the form EID.Interface additional to the EID.Host. (Such 
an EID naming structure is also combinable with flat naming). 

An Endpoint Identifier (EID) can thus substitute the IP address for 
routing (to a point of attachment). This may in the long term obviate 
the need for the Locator.Net → IP address resolution.  

Distributed Hash Tables (DHTs) are assumed to be well suited for 
support of EID based routing, but this needs further verification. 

Basing routing on EIDs and DHTs can in principle be done in two 
very different ways: 

1. The first alternative is to use e.g. a DHT to look up an 
address for the EID.  

2. Another alternative is to completely avoid the additional 
address by using e.g. a DHT for direct routing of each 
and every packet. 

The second alternative is interesting since e.g. multicast and 
Mobility Management represent a natural extension of DHT based 
routing. This remains as future work. 

Middle-boxes (such as NATs, firewalls and transparent caches) 
are used as last resorts due to functional limitations in the Internet 
architecture. This results in violating IP semantics and making the 
Internet application-specific. Redirection is therefore proposed in [7] 
to allow a network entity to direct resolutions of its name not only to 
its own location, but also to the locations or names of chosen 
delegates or proxies. This mechanism is called receiver-controlled 
intermediaries and is discussed in detail in [7]. 

The destination abstraction introduced in the Layered Naming 
Architecture [7] was generalized to represent a sequence of 
destinations (i.e. a sequence of EIDs, locators or SIDs). The 
intermediary points, reached via the communication substrate, do not 
only forward the packet but may act on them in non-trivial ways (e.g. 
by carrying out rerouting, address translation, encapsulation etc.). 
These intermediaries represent source-controlled (as opposed to 
receiver-controlled) intermediaries. The mechanism of stacked 
identifiers can be applied for implementation of the mechanism. An 
API for intermediary control with associated substrate level 
signalling for path control may be defined. This delegation or 
redirection at the Ambient Network Resource layer can find more 
uses, e.g. for load balancing. 
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C. Sessions and mobility 
Entities communicate with each other using logical 

communication links named sessions. A session implies persistent 
communication state within the linked entities. (A session may be 
considered to be roughly analogous to a transport-layer connection in 
the current architecture.) Each packet belongs to exactly one session, 
and an entity may have multiple concurrent sessions that each could 
involve multiple flows. Sessions are purely end-to-end, they are 
known only to their entities and are invisible to the routers. However, 
there is a one to one mapping between the flows constituting a 
session and the paths carried at the communication substrate. Paths 
are under QoS and Mobility Management below the Ambient Service 
Interface.  

Each packet carries a session id that enables the receiving entity to 
de-multiplex the message, within the slot, to its session (see Fig. 3). 
The name domain of session ids is local to an entity, and thus 
unchanged by movement of the entity. 

Session establishment between entities A and B will generally 
involve some kind of handshake that begins when A sends an initial 
message to B. Entity A must obtain a locator to reach B. Subsequent 
packets from A to B will also carry a session id valid for the B-side 
of the session, but the initial packet cannot, since session id�s are 
local to entities. Thus, there is a need for initialization that may be 
supported by a Directory System (DS) and some kind of a 
Rendezvous mechanism [9]. An in depth description of session 
establishment may be found in [4]. 

A session is composed by one or more flows. Each of these flows 
has allocated a distinctly identified path within the communication 
substrate, and each flow may thus be allocated different 
characteristics (e.g. QoS, resilience, etc.) via the PATH primitive. 
The level of granularity for the Ambient Networks Mobility 
Management (MM) is the path (flow).  

Session mobility implies MM for all paths/flows within a session. 
The basic functionality required for session mobility is available for a 
normal handover initiated on layers below the application. However, 
session mobility has to be initiated by the session user (e.g. by the 
application), and may cross device boundaries. The initializing entity 
must therefore specify the locator identifying the slot of the new 
entity to which the session should be moved. The initiating entity 
must additionally transfer its association state to the new entity by 
initiating an application level context transfer. This context transfer 
establishes the session endpoint within the new entity and identifies 
the triggering event for the session handover to be carried out within 
the Ambient Network Control Space. This assumes that the initiating 
entity requests the Ambient Network Control Space to complete the 
handover. The path establishment(s) to the new entity is implicit in a 
normal handover. However, the triggering event could carry an 
identification of selected flows (e.g. a subset of active flows in a 
multi-flow session) to allow sub-session mobility. 

Session handover controlled by a third party is also possible. Such 
a capability could be an interesting building block of advanced new 
services. 

D. End-to-End Security  
At the network level, decoupling location and identity means that 

using IP routing to send a packet to a given location (via IP) no 
longer means that the packet is going to the host with the intended 
identity (EID). On the other hand, because EIDs are flat, they can 
hold cryptographic meaning. The identifiers could be derived e.g. by 
hashing a public key. As a result, two communicating parties, given 
each other�s identifiers, can authenticate each other in a way that 
they could not if hosts were identified only by IP address. The Host 

Identity Protocol (HIP) [10] is exactly designed to address such 
security issues and many of its mechanisms can be inherited by the 
new architecture. A more in depth discussion of security is outside 
the scope of this paper, and interested readers are referred to [4], or 
to current work in the context of the Ambient Networks Project [11].  

IV. CONCLUSIONS AND FURTHER WORK 
We have developed a business oriented architectural framework as 

a basis for further elaborations, e.g. within the Ambient Network 
Project. The characteristic of this framework is that it should allow 
diverse players in the cyber-business to revitalize the innovation that 
has made Internet such a tremendous success. This architecture fully 
supports mobility up to the session level and can serve as a vehicle 
for converging mobile and wire-line communications by treating 
mobility as the ordinary case allowing potentially all end-systems to 
move either alone or in groups. Mechanisms for QoS and resilience 
control are also inherent in the architecture, and the proposed 
layering with API support ensures freedom of choice and flexibility 
in innovation both in dimensions of technology and functionality. 

The following aspects of the architecture are for urgent further 
study within the Ambient Network project: Use of flat names, 
without external semantic bindings, for the SID and the EID; DHT 
applicability for e.g. name resolution and routing; Details of locator 
based handover management, and last, but probably most important, 
the security aspects. 
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