Towards Software-defined Silicon: Applying LLVM to
Simplifying Software

Teemu Rinta-aho
Ericsson Research
teemu.rinta-
aho@ericsson.com

Adnan Ghani

Ericsson Research)
adnan.hassan.ghani@gmail.com

Sameer D.
Sahasrabuddhe
IIT Bombay
sameerds@it.iitb.ac.in

Pekka Nikander

Ericsson Research
pekka.nikander@ericsson.com

ABSTRACT

High-Level Synthesis (HLS) is a result of similar develop-
ment in hardware design as there has been with software.
Writing an efficient program does not require the program-
mer to understand machine language or the target CPU —
it is the modern compiler that knows how to transform a
high level language into efficient machine code. Similary,
current HLS tools raise the abstraction level from Verilog or
VHDL all the way to C or C++.

The current HLS tools are mainly targeted to hardware
designers to improve their productivity. We, however, would
like to take a different approach and target the network re-
searchers — who usually have more competence in writing
software than designing hardware. In this paper, we de-
scribe an experimental tool chain that is able to transform

existing, software-oriented C++ — within the limited do-
main of Click-based packet processing — into a hardware
description.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Compilers, Optimiza-
tion

Keywords
High-Level Synthesis, LLVM, FPGA

1. INTRODUCTION

Hardware-based implementations of algorithms are typ-
ically characterised by parallel operations and relative in-
flexibility, resulting in better energy efficiency and higher
operational speed than comparable software ones. At the
same time, producing hardware both in terms of design and
manufacturing is orders of magnitude more expensive than
producing software, causing a major obstacle for research

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

WISH-3 2011 Chamonix, France

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and exploration in areas where high processing speed and
energy efficiency are desirable, such as packet communica-
tion networks.

Today, writing packet processing applications in software
offers a flexible and easy way for students and researchers for
experimentation. One popular tool for this is the Click mod-
ular router [9]. On the other hand, the Stanford NetFPGA
platform [11] allows for flexible hardware designs for those
who are interested in investigating line speed packet pro-
cessing. Comparing these two; while programming packet
processing applications in Click C++ is easy and flexible,
describing even a simple application in Verilog (for the NetF-
PGA) is a relatively major undertaking, taking easily a few
months for an average student.

Based on our limited experiences so far, we surmise that
an ideal research platform would allow one to express their
designs in a widely familiar software programming language,
such as C or C++, and then be able to convert that into
a hardware design that could be tested in real life, e.g. us-
ing the NetFPGA. Unfortunately, our limited testing of the
existing high level synthesis (HLS) tools indicate that their
target group is the hardware designers who use a high level
language to increase productivity in hardware design. They
are definitely not ready to take an existing piece of software
and transform that into hardware [12].

In general, it is impossible to translate an arbitrary soft-
ware program into a hardware description without adding
some kind of a general purpose controller at the hardware
side. At the extreme, any eval-like construction requires
the ability of running arbitrary programs. More down to
the earth, unpredictably bound recursion, function point-
ers, or virtual methods can only be supported if the notion
of a “function call” is first mapped to a suitable mechanism
in hardware. A lot depends on the way in which high-level
concepts are modelled in hardware.

Well-known software transformations may in many cases
be used to convert such problematic constructions into more
hardware-friendly ones. However, sometimes the transfor-
mations must be used in a way that would not make any
sense from software-optimisation point of view. For exam-
ple, whenever the entire executable program is available to
the optimisation and static enough, function pointers can be
replaced with conditional branch instructions.

In this paper, we describe an experimental tool chain that
is able to transform existing, software-oriented C++ algo-
rithms — within the limited domain of Click-based packet

processing — into a hardware description. We have cho-
sen to work with the LLVM compiler toolkit, as there are
a wide variety of tools and an active development commu-
nity working on LLVM. This allows us to take advantage of
the existing parallelising optimisations. LLVM modularity
also allows us to easily write our own transforming com-
piler passes, and to add our own back end, for which we use
AHIR [13].

Many of the parallelising optimisations, when applied to
their extreme, result in code that has maximal parallelism
and may therefore produce highest performing hardware
with multiple parallel execution elements. Typical exam-
ples of such approaches include duplicating basic blocks into
superblocks [5], as well as loop peeling and unrolling [4].

Our current approach combines typical software-oriented
optimisations and some parallelising optimisations together
with compile-time generated constant data structures and
constant propagation. Our compiler front end lowers the
original Click programs into versions that are more suitable
for generating VHDL with the AHIR backend.

The version of the toolchain presented earlier [12] was
about exploring the possibilities of some commercially avail-
able HLS tools as the backend of our toolchain. The version
presented in this paper is completely new work. We have
switched from a commercial backend to AHIR, and have
written the frontend completely from scratch, building on
the knowledge gained when working with the previous ver-
sion.

In section 2 we give a brief look onto the essential back-
ground information, in section 3 we outline the operation
of the toolchain, in section 4 we go into the details with a
usage example. In section 5 we conclude the paper.

2. BACKGROUND

2.1 Click Modular Router

Click was introduced by Eddie Kohler [8] as a platform
for developing software routers and packet processing appli-
cations. A packet processing application is assembled from
a collection of simpler elements that implement basic func-
tions, such as packet classification, queuing, or interfacing
with other network devices. The elements are assembled into
a directed graph using a configuration language, and pack-
ets flow along the links in the graph. Click provides a few
features to simplify writing complex applications, including
pull connections to model packet flow driven by hardware
and flow-based contexts to help elements locate other rele-
vant elements. Since its introduction, Click has been used
as a tool for research into a wide variety of packet processing
applications. Some representative examples are multiproces-
sor routers [2] and prototyping a new architecture for large
enterprise networks [7].

Click modules use the full power of C++ as an object-
oriented programming language. That includes virtual func-
tions and dynamically allocated memory. While these lan-
guage constructs facilitate code reuse and ease of program-
ming, they complicate the task of synthesising hardware
from the code. A major part of the task in building the Click
hardware synthesis tool chain was to try to find the correct
code transformations for the language constructs that can
not be directly mapped into a hardware description.

2.2 NetFPGA

The NetFPGA platform [11] provides a similar capabil-
ity for researchers who are interested in investigating line
speed packet processing applications. The NetFPGA plat-
form provides a hardware board with a Xilinx Virtex-II Pro
FPGA and a Verilog framework supporting hardware with a
PCI bus and four 1 Gbps Ethernet ports. Within this frame-
work, students and researchers can write code to implement
a variety of routing and packet processing applications that
are then synthesised into hardware. The NetFPGA board
can be plugged into a PC providing control plane support,
and the resulting application can be tested at line speed in
actual networks.

2.3 LLVM

LLVM [10] is a collection of modular components for build-
ing compiler tool chains. The LLVM components operate
on an intermediate language, called the LLVM Intermediate
Representation (LLVM IR). The LLVM core consists of a
compiler driver, a number of analysis and code optimization
passes, and a debugger. Several frontends and backends are
using LLVM: clang is intended as a replacement for GCC.
However, LLVM also provides support for the GCC family of
compilers, thereby including all their supported languages.
LLVM has been used to implement a variety of language
tool chains, including previous attempts to generate hard-
ware [14] and bit-level optimisation of HLS data flows [15].

One of the most interesting uses of LLVM is as an interme-
diate representation based on the Single Static Assignment
(SSA) form. The approach has also some promise for high-
level hardware synthesis. For example, TCE [6] is a set of
tools for designing processors based on Transport Triggered
Architecture. TCE uses the LLVM clang compiler as the
front end for compiling hardware designs written in C and
C++. As another example, the UCLA xPilot project de-
veloped a high level language hardware synthesis tool chain
using LLVM [3] which later evolved into a product, the Au-
toPilot from AutoESL [1].

2.4 AHIR

AHIR [13] is a backend for LLVM that transforms LLVM
bytecode to VHDL. It is developed at II'T Bombay and is to
be published as open source. It is a toolchain on its own,
consisting of five different tools with intermediate result files.
The LLVM IR is first used to build a CDFG, which is then
transformed into an AHIR representation. This can then
be linked and optimised, and finally written out as VHDL
modules. Current version of AHIR supports a wide set of
LLVM IR - the few notable exceptions are function pointers
and recursion.

3. OVERALL APPROACH

Our overall approach to preparing a Click application for
hardware synthesis is depicted in Figure 1. The tool chain
starts by compiling each Click element, written in C4++
(both standard and user-supplied ones), into both a linkable
object file and an LLVM IR file. The object files are linked
to our Click2LLVM tool and loaded into memory by the
Click library functions. The IR files are loaded and linked
to form an LLVM Module, which can be handled with the
LLVM API functions, also linked into Click2LLVM.

At the next step, we use Click2LLVM to generate LLVM
IR out of a user-supplied Click configuration file. The com-
piler first parses the Click configuration and initialises the

Click
NetFPGA
target library

Click
e —
element
IR

loop
peeling

aggressive
constant
propagation

NetFPGA
reference
NIC

NetFPGA/
Click
wrapper

\

Linked
IR

B

Optimised

R VHDL

/
~©-

'
% .
- —
element| .’
object | »*
‘

|

Click =
host target jm——
library

Click
config IR|

Figure 1: The Click-to-NetFPGA toolchain

resulting Click software router. We then “freeze” the ini-
tialised router and generate an LLVM IR description out
of it, by directly reading the memory contents of initialised
elements. The memory contents are transformed to LLVM
constants, which are used as the initializers for the Click
elements. These constant initialisers replace calls to C++
constructors and the accompanying runtime Click initialisa-
tion code. Click2LLVM also generates a wrapper function®
for each Click element. This wrapper function continuously
calls the packet processing code of the Click element on in-
coming packets, and is later used to form a VHDL module by
AHIR. This new code is added to the LLVM Module which
already has the Click element source code. The resulting IR
module is then run through LLVM opt.

opt runs a set of optimising passes on the IR module.
First, we use the -internalize-public-api-file parame-
ter to pass opt a list of functions that need to be considered
as the API, and thus preserved in the result. We list each of
the generated wrapper function in that file. Now that the
Click elements are constants, we get good results with the
constant propagation and inlining passes. We use ~inline-
threshold=10000 to get all packet processing code, e.g. the
simple_action() function of the corresponding Click ele-
ment inlined in the wrapper function. We also use standard
passes Aggressive Dead Code Elimination, Dead Instruction
Elimination, Lower atomic intrinsics, Lower invoke, Lower
switch, Interprocedural Sparse Conditional Constant Prop-
agation and Dead Argument Elimination. The optimised
IR module is then run through AHIR, which transforms
the LLVM IR into VHDL. The resulting VHDL, together
with the static VHDL wrapper code (see below) can then
be synthesized to a bitstream file that can be uploaded to
the NetFPGA card and run.

We are currently extending the NetFPGA reference NIC
design with our own module, and need to have compatible
module interface. The data path for packets in Click differs
significantly from that of the NetFPGA reference NIC design

!The wrapper functions are named ahir_glue_xxx (), where
xxx is the name of the Click element

(pointers to whole packets vs. 64-bit chunks at a time) and
there are differences in memory management in software and
hardware. In this version of the prototype we have solved
this with a wrapper (written in VHDL, see Figure 2) that
sits between the AHIR~generated “Click VHDL” and the rest
of the (existing) NetFPGA design. The wrapper transforms
the 64-bit chunks to complete packets on input (the Input
Module), and vice versa on output (the Output Module). It
also handles the calls by Click elements to allocate memory
(e.g. when creating new packets on the fly).

4. |IMPLEMENTATION DETAILS

4.1 New Target for Click

Click, as distributed, consists of a runtime library and
a large set of standard elements. The library implements
the essential components, such as the Element, Packet, and
Router classes; altogether some 80 classes. Click can be
compiled as a userspace program on e.g. Linux, FreeBSD or
Mac OS X, or as a kernel module for Linux. Certain parts of
the library differ between these targets, e.g. in Linux kernel
native skb structures are used to represent packets. When
compiled as a userspace program, packets are stored in the
memory area of the running click process.

We have added yet another target for Click: NetFPGA.
The modifications are implenented with similar precompiler
instructions and often in the same functions or methods
which already made a difference between Linux kernel and
userspace implementations. One example of such modifica-

tion is the creation of a new packet through the Packet: :make ()

method. In Linux kernel an skb is referenced from Class
Packet, while in userspace Click, memory is allocated dy-
namically from process memory space. With NetFPGA, we
request a memory address for a block of pre-allocated BRAM
via the function call read_uintptr("free_queue")2.

2This function is later recognized by AHIR and transformed
to VHDL which reads a “pointer to an unsigned integer” from
a FIFO named “free_queue”.

While we have implemented a new target for Click by
modifying some existing libraries and C++ classes, our goal
has been to not require modifications to the existing Click
elements or the guidelines for writing new Click elements.
The goal is to let the programmer to concentrate on describ-
ing packet processing in C++ instead of thinking about the
hardware target.

4.2 Compiling Click Configurations

A Click configuration defines a particular assembly of Click
elements, thereby constructing a packet processing applica-
tion; in Click terms, a Router. In practise, when the user-
level click tool is used to execute the router, the tool first
parses the configuration, then initialises the router, and fi-
nally starts packet processing. In the typical case, the packet
processing phase then continues until the user terminates
it. In our tool chain, the first two steps of this process are
performed by our Click2LLVM compiler. The last, actual
packet processing step is then performed by the synthesised
hardware.

When Click parses and initialises a configuration, it also
instantiates all the elements defined in the configuration and
invokes the initialisation methods of the resulting element in-
stances. In practise, the elements are either statically com-
piled to the tool itself, or the Click tool dynamically loads
the elements into its address space from a dynamically linked
shared library. The tool then instantiates the C++ classes
representing the elements and invokes the virtual methods
configure and initialize.

Click2LLVM is essentially identical with the click userlevel
tool up to this point. However, while the standard tool
now initiates packet processing, our compiler writes out the
resulting initialised router. For this, our compiler uses the
LLVM libraries.

After the Click router has been initialised, we link all
necessary Click modules into a single LLVM module. By
running the TargetData pass, we can later use the Struct-
Layout API to find the memory locations for different fields
of the Click elements. These memory locations represent
the private variables of the C++ Click classes. We then it-
erate through each Click element of the Router, and write
an LLVM Global Variable for each Click element into the
LLVM Module.

With this approach, we can write out a single LLVM Mod-
ule in LLVM IR language that contains the source code for
the Click elements, required parts of the Click library (such
as the Element and Packet classes) constants that represent
initialized elements, and the wrapper function for each ele-
ment.

4.3 Optimisation Phase

The resulting LLVM Module constructed by the Click2LLVM

tool is still unoptimised and contains constructs not suit-
able for generating hardware from, such as function point-
ers. The next phase is to run a set of transforming passes
to the module.

First, we run a pass that replaces the this argument in
the C++ originated methods with the global variable repre-
senting the Click element. After this, the method becomes
constant and can be e.g. inlined later. Currently this ap-
proach brings a limitation to our tool, we can only have one
instance of each Click element class. However, the limitation
can be removed, either with the trivial approach of dupli-

cating the methods and naming them differently, or writing
a pass that splits the this argument to two: one pointing
to the constant part of the class and another to the part
holding instance-specific variables. The latter approach re-
quires splitting the types in two as well. We feel this is all
doable and will benefit optimizing C++ software in general,
but the work on this is ongoing as of writing this report.

Next step is to run LLVM opt with the standard com-
pile optimisations; this includes loop unrolling, argument
promotion, dead code elimination and other well known op-
timisations. Then we run inlining with a more aggressive
than default threshold to get as much as possible inlined in
the wrapper functions. This helps reducing the number of
resulting VHDL modules in the end.

4.4 Usage Example

To illustrate the usage of the toolchain, we will go through
the steps leading from the Click configuration file until the
resulting VHDL. We have selected a minimal configuration
(see Program 1) with only a single actual packet processing
element: Minimal. All the three elements in the configu-
ration come from our own minimal-package, therefore the
require declaration on the first line. We currently require
the elements to be introduced and given names, which is
done on the next three lines. The last line describes the
flow of packets between the elements.

Program 1 test.click

require(package "minimal-package");
src :: FromFPGA;
min :: Minimal;

dst :: ToFPGA;

src -> min -> dst;

Program 2 Minimal::simple_action()
Packet *
Minimal::simple_action(Packet *p) {
unsigned char *data =
p—>uniqueify()->data();
datal[0] "= 0xOF;
return p;

}

Elements FromFPGA and ToFPGA are special elements that
interface the Click/NetFPGA wrapper. They both are for
convenience (to have static wrapper code) and also as place-
holders for code to transform packets between the NetFPGA
and Click worlds. FromFPGA calculates the Click-specific
packet lengths and offsets and stores them in the packet —
this way the wrapper (written in VHDL) needs no modifi-
cations if Click itself is updated. ToFPGA does the reverse,
mapping Click-specific fields into NetFPGA control flags.

Program 2 shows the C++4 source code for the packet
processing code of Click element Minimal. simple_action()
is part of the Click API, and is called for the packet if the
element has defined it. In our Minimal element, we simply
XOR the first byte of the p->data with 0xOF and pass the
packet further.

Program 3 Generated ahir_glue_min()

@1 = constant [8 x i8] c"min_inO\00"

@min = constant %struct.Minimal { ... } ; Struct contents not shown here

define void @ahir_glue_min() {

%0 = call i32 Q@read_uintptr(i8* getelementptr inbounds ([8 x i8] @1, i32 0, i32 0))

%1 = inttoptr i32 %0 to Ystruct.Packetx*

call void Qelement_push(Ystruct.Element* getelementptr inbounds
(%struct.Minimal* @min, i32 0, i32 0), i32 0, %struct.Packet* %1)

ret void

Program 4 Optimized ahir_glue_min()

@1 = internal constant [8 x i8] c"min_inO\00"

@GV_3 = constant [1 x %"struct.Element::Port"] [%"struct.Element: :Port" {
[16 x i8] c"dst_in0\00\00\00\00\00\00O\00O\0OO\0OO0", Y%struct.Element* undef, i32 undef }]

define void @ahir_glue_min() ssp {

%tmp = tail call i32 @read_uintptr(i8* getelementptr inbounds ([8 x i8]* @1, i32 0, i32 0))

%tmp3 = inttoptr i32 Ytmp to ’%struct.Packetx*

%tmp4 = getelementptr inbounds Ystruct.Packet* %tmp3, 132 0, i32 3

%tmp5 = load i8* Ytmp4, align 4
%tmp6 = load i8+ %tmp5, align 1
%tmp7 = xor i8 %tmp6, 15

store i8)tmp7, i8+ Ytmp5, align 1
%tmp8 = icmp eq i32 %tmp, O

br il %tmp8, label %_ZN7Element4pushEiP6Packet.exit, label %bb.i

bb.i:

tail call void Qwrite_uintptr(i8* getelementptr inbounds (
[1 x %"struct.Element::Port"]* @GV_3, i32 0, i32 0, i32 0, i32 0), i32 %tmp)

ret void

_ZN7Element4pushEiP6Packet.exit:
ret void

}

After running the click21llvm tool with the test.click
configuration, we get function ahir_glue_min() generated
in the resulting LLVM IR Module (see Program 3). First
there is a call to read_uintptr() with pointer to constant
@1. This is a blocking call, i.e. it returns when there is
something written in queue min_in0 first. Writing to this
queue is done by the FromFPGA element, as described in
the test.click. Next, the read pointer is cast to type
struct.Packet, which represents the Class Packet of Click.
Then a helper function element_push() is called with two
arguments: a pointer to the Click element (@min) and the
current packet (%1).

Then we run the optimizations to the LLVM Module, and
we can see that the optimised version of ahir_glue_min()
(see Program 4 is longer, but it has everything inlined. The
only calls to external functions are read_uintptr() and
write_uintptr(), which actually won’t result in function
calls in the resulting hardware, but AHIR will recognize
them as I/O calls for this module, and treat them in a spe-
cial way. They will be reads and writes to named FIFOs in
the VHDL.

As we have constant arguments to element_push(), con-

stant propagation and inlining passes have succesfully re-
duced the helper function away, leaving the contents of the
original simple_action() inlined in this wrapper function.
The core operation, XOR to a data byte, is visible in the
LLVM representation. The final step to produce the VHDL
is to run AHIR on this generated LLVM Module.

4.5 Resulting Hardware Architecture

An AHIR “system” consists of hardware modules that are
“always on” — the module has an input control signal to
process data. On completion, it sends an output control sig-
nal. The control signals may be accompained by arguments
while additional data and results may be stored in the main
memory. In addition, AHIR modules also support blocking
I/0O ports for directly exchanging data with each other or
with other non-AHIR components in the system.

A Click configuration consists of a set of Click elements
that exchange packet pointers over port connections. The
pointers are used by the elements to access packets from the
main memory. We translate an input Click configuration to
a set of AHIR modules where each module implements the
behaviour of one Click element and the connections between

Free Queue

Memory Subsystem

Figure 2: The Click/NetFPGA Wrapper

Click elements are mapped to I1/O interaction between mod-
ules (see Figure 2).

We generate a separate wrapper function for each element
in the Click configuration, whose overall effect is to map the
element to a separate program that reads packets from input
ports, process those packets and writes them to appropriate
output ports.

The wrapper glues an AHIR I/O read operation to the
each input port of the element. When a packet pointer is
read from an input port, the wrapper calls push() method
for that port, which in turn, executes the corresponding ac-
tions defined for that element. This behaviour terminates
with a call to the push() method on an appropriate output
port, which in fact triggers a corresponding AHIR 1/O write
operation.

Each “wrapped element” is compiled and optimised sepa-
rately by our toolchain. The aggressive optimisation results
in a single function that contains calls to AHIR I/O oper-
ations along with a highly optimised implementation of the
original element behaviour. The AHIR toolchain processes
each element separately to create a corresponding AHIR
module.

I/0 ports on the AHIR module are inferred from the port
names used in the I/O function calls in the body of the wrap-
per. The port names are also used to automatically create
I/0O connections between the AHIR modules that correspond
to the port connections in the original Click configuration.
The result is a set of interacting AHIR modules that together
implement the original Click configuration.

The Click framework defines a packet as a distinct in mem-
ory object that can be created, copied, and deleted. The size
of the packet may change during its lifetime, which can also
affect the space it occupies in the memory. Our implemen-
tation reinterprets the packet as a fixed-size region of the
available address-space. The address space is divided a pri-
ori into a set of pre-defined packet locations, where each
location is mapped to a different memory bank to improve
performance.

The packet locations are managed using queues. A global
“free queue” (see Figure 2) contains pointers to currently free
slots for packets. In addition, queues are provided between
elements to hold packets that are in transit. Figure 2 depicts
the resulting design: the Click elements are inside the dashed

box in the middle; the rest is a static construct described in
VHDL. This whole design is then used to replace the output
port lookup module of the NetFPGA reference NIC design.

5. CONCLUSION

In this paper we have presented results from our ongoing
work towards a toolchain that can transform Click routers
written in C++4 to a hardware description in VHDL, which
can then be synthesized and run on a NetFPGA card as part
of the Stanford reference NIC design.

By using the “initialize-freeze-dump” method, we can run
the initialisation code outside the hardware, and then use
the essential parts of code directly related to packet pro-
cessing to form the hardware parts.

In the future we plan to evaluate the performance of the
Click router on a NetFPGA card and exploring further pos-
sibilities of optimisations on early stages of the toolchain.
We foresee that some of these generic optimisations are use-
ful also in other domains, e.g. compiling C+-+ programs to
be run on a CPU.

6. REFERENCES

[1] AutoESL AutoPilot.
http://www.autoesl.com/autopilot_fpga.html.

[2] B. Chen and R. Morris. Flexible Control of Parallelism
in a Multiprocessor PC Router. In Y. Park, editor,
USENIX Annual Technical Conference, General
Track, pages 333-346. USENIX, 2001.

[3] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and
7. Zhang. xPilot: A Platform-Based Behavioral
Synthesis System. In Proc. of SRC' TechCon’05, 2005.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
Program Dependence Graph and Its Use in
Optimization. ACM Trans. Program. Lang. Syst.,
9(3):319-349, 1987.

[5] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. O. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery. The Superblock: An Effective Technique
for VLIW and Superscalar Compilation. Journal of
Supercomputing, 7(1,2):229-248, March 1993.

[6] P. Jddskeldinen, V. Guzma, A. Cilio, and J. Takala.
Codesign Toolset for Application-Specific
Instruction-Set Processors. In Proc. of Multimedia on
Mobile Devices 2007, 2007.

[7] C. Kim, M. Caesar, and J. Rexford. Floodless in
Seattle: a scalable ethernet architecture for large
enterprises. In V. Bahl, D. Wetherall, S. Savage, and
I. Stoica, editors, SIGCOMM, pages 3-14. ACM, 2008.

[8] E. Kohler. The Click modular router. PhD thesis,
MIT, 2000.

[9] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM Trans.
Comput. Syst., 18(3):263-297, 2000.

[10] C. Lattner and V. S. Adve. The LLVM Compiler
Framework and Infrastructure Tutorial. In
R. Eigenmann, Z. Li, and S. P. Midkiff, editors,
LCPC, volume 3602 of Lecture Notes in Computer
Science, pages 15—16. Springer, 2004.

[11] J. Lockwood, N. McKeown, G. Watson, G. Gibb,
P. Hartke, J. Naous, R. Raghuraman, and J. Luo.

(12]

(13]

NetFPGA - An Open Platform for Gigabit-rate
Network Switching and Routing. In IEEFE
International Conference on Microelectronics
FEducation, June 2007.

P. Nikander, B. Nyman, T. Rinta-aho, S. D.
Sahasrabuddhe, and J. Kempf. Towards
Software-defined Silicon: Experiences in Compiling
Click to NetFPGA. 1st European NetFPGA
Developers Workshop, Cambridge, UK, 2010.

S. D. Sahasrabuddhe, S. Subramanian, K. P. Ghosh,
K. Arya, and M. P. Desai. A C-to-RTL flow as an
energy efficient alternative to embedded processors in
digital systems. In 13th Euromicro Conference on
Digital System Design, September 2010.

J. L. Tripp, M. Gokhale, and K. D. Peterson. Trident:
From High-Level Language to Hardware Circuitry.
IEEE Computer, 40(3):28-37, 2007.

J. Zhang, Z. Zhang, S. Zhou, M. Tan, X. Liu,

X. Cheng, and J. Cong. Bit-level optimization for
high-level synthesis and FPGA-based acceleration. In
P. Y. K. Cheung and J. Wawrzynek, editors, FPGA,
pages 59—-68. ACM, 2010.

